

Herb Schildt's C++
Programming Cookbook

http://dx.doi.org/10.1036/007148860X

About the Author

Herbert Schildt is a leading authority on C++, C,
Java, and C#, and is a master Windows programmer.
His programming books have sold more than 3.5
million copies worldwide and have been translated
into all major foreign languages. He is the author of
numerous bestsellers on C++, including C++: The
Complete Reference, C++: A Beginner’s Guide, C++ from
the Ground Up, and STL Programming from the Ground
Up. His other bestsellers include C#: The Complete
Reference, Java: The Complete Reference, C: The Complete
Reference, and Herb Schildt’s Java Programming Cookbook.
Schildt holds both graduate and undergraduate
degrees from the University of Illinois. He can be
reached at his consulting office at (217) 586-4683. His
website is www.HerbSchildt.com.

About the Technical Editor

Jim Keogh introduced PC programming nationally in
his Popular Electronics Magazine column in 1982, four
years after Apple Computer started in a garage.

He was a team member who built one of the first
Windows applications by a Wall Street firm, featured
by Bill Gates in 1986. Keogh has spent about two
decades developing computer systems for Wall Street
firms, such as Salomon, Inc. and Bear Stearns, Inc.

Keogh was on the faculty of Columbia University
where he taught technology courses, including the
Java Development lab. He developed and chaired the
electronic commerce track at Columbia University.
Keogh is presently on the faculty of New York
University. He is the author of J2EE: The Complete
Reference, J2ME: The Complete Reference, both
published by McGraw-Hill, and more than 55 other
titles, including five in the popular ...For Dummies
series. His other books include Linux Programming for
Dummies, Unix Programming for Dummies, Java
Database Programming for Dummies, Essential Guide to
Networking, Essential Guide to Computer Hardware, The
C++ Programmer’s Notebook, and E-Mergers.

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

www.HerbSchildt.com

Herb Schildt's C++
Programming Cookbook

Herb Schildt

G

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/007148860X

The McGraw-Hill Companies

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except as permit-
ted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-164385-0
The material in this eBook also appears in the print version of this title: 0-07-148860-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trade-
mark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one
copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use
the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO
THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUD-
ING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant
or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free.
Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in
the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through
the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

DOI: 10.1036/007148860X

http://dx.doi.org/10.1036/007148860X

™ Professional

A Want to learn more?

!’"/ ¥ We hope you enjoy this
McGraw-Hill eBook! If
you’'d like more information about this book,
its author, or related books and websites,
please click here.

http://dx.doi.org/10.1036/007148860X

For more information about this title, click here

Contents

Preface xvii
(0)3 44 T 1
What'sInside 1
How the Recipes Are Organized 2
AFew Words of Caution L. 3
C++ Experience Required i 3
What Version of C++? 4
Two Coding Conventions it 4
Returning a Value frommain() 4
Using Namespace std? , 4
String Handlingo 7
Overview of Null-Terminated Strings 8
Overview of the string Class 11
String Exceptions 16
Perform Basic Operations on Null-Terminated Strings 16
Step-by-Step ... 17
Discussion ... 17
Example 18
Options and Alternatives 19
Search a Null-Terminated String 20
Step-by-Step ... 21
Discussion ... 21
Example 21
Options and Alternatives 22
Reverse a Null-Terminated String 23
Step-by-Step ... 23
Discussion 24
Example 24
Options and Alternatives 25
Ignore Case Differences When Comparing Null-Terminated Strings 27
Step-by-Step ... 27
Discussion 28
Example 29
Options and Alternatives 31
Create a Search-and-Replace Function for Null-Terminated Strings 31
Step-by-Step ... 32
Discussion ... 32

http://dx.doi.org/10.1036/007148860X

vi

Herb Schildt's C++ Programming Cookbook

Example
Options and Alternatives
Categorize Characters Within a Null-Terminated String
Step-by-Step ...
Discussion
Example
Bonus Example: Word Count
Options and Alternatives
Tokenize a Null-Terminated String
Step-by-Step ...
Discussion
Example
Options and Alternatives
Perform Basic Operations on string Objects
Step-by-Step ...
Discussion
Example
Options and Alternatives
Search astring Object i
Step-by-Step ...
Discussion
Example
Bonus Example: A Tokenizer Class for string Objects
Options and Alternatives
Create a Search-and-Replace Function for string Objects
Step-by-Step ...
Discussion
Example
Options and Alternatives
Operate on string Objects Through Iterators
Step-by-Step ...
Discussion
Example
Options and Alternatives L.
Create Case-Insensitive Search and Search-and-Replace
Functions for string Objects L.
Step-by-Step ...
Discussion
Example
Options and Alternatives L.
Convert a string Object into a Null-Terminated String
Step-by-Step ...
Discussion
Example
Options and Alternatives

Contents
Implement Subtraction for string Objects 85
Step-by-Step ... 86
Discussion 87
Example 88
Options and Alternatives 90
Working with STL Containersoooiiiiiiiiiiiiiaa.. 93
STLOverview 94
Containers 94
Algorithms ... 94
Iterators 94
Allocators ... 95
Function Objects i i i 95
Adaptors ... 96
Predicates i 96
Binders and Negators L. 96
The Container Classes i 96
Common Functionality L. 98
Performance Issues i 101
Basic Sequence Container Techniques 102
Step-by-Step 103
Discussion 103
Example 105
Options and Alternatives 109
Use vector 111
Step-by-Step 111
Discussion 112
Example 115
Options and Alternatives 118
Usedeque 118
Step-by-Step 119
Discussion 119
Example ... 120
Options and Alternatives 124
Uselist ... o 124
Step-by-Step ... 125
Discussion 125
Example ... 127
Options and Alternatives 130

Use the Sequence Container Adaptors: stack, queue,
and priority_queue ... 132
Step-by-Step 132
Discussion 133

Example 135

vii

viii

Herb Schildt's C++ Programming Cookbook

Bonus Example: Use stack to Create a Four-Function Calculator
Options and Alternatives
Store User-Defined Objects in a Container
Step-by-Step ...
Discussion
Example
Options and Alternatives
Basic Associative Container Techniques
Step-by-Step ...
Discussion
Example
Options and Alternatives
USemap ..ot
Step-by-Step ...
Discussion
Example
Options and Alternatives
Usemultimap
Step-by-Step ...
Discussion
Example
Options and Alternatives
Usesetand multiset
Step-by-Step ...
Discussion
Example
Bonus Example: Use multiset to Store Objects
with Duplicate Keys il
Options and Alternatives

4 Algorithms, Function Objects, and Other STL Components
Algorithm Overview
Why Algorithms?
Algorithms Are Template Functions

The Algorithm Categories
Function Object Overview i .
Binders and Negators Overview,
SortaContainer
Step-by-Step
Discussion
Example ...
Options and Alternatives

Find an Elementin a Container oo
Step-by-Step
Discussion

Contents
Example 194
Bonus Example: Extract Sentences from a Vector of Characters 195
Options and Alternatives 197
Use search() to Find a Matching Sequence 199
Step-by-Step ... 200
Discussion 200
Example 200
Options and Alternatives 202
Reverse, Rotate, and Shufflea Sequence 203
Step-by-Step ... 204
Discussion 204
Example 204
Bonus Example: Use Reverse Iterators to
Perform a Right-Rotate 206
Options and Alternatives 207
Cycle Through a Container with for_each() 208
Step-by-Step ... 208
Discussion 208
Example 209
Options and Alternatives 210
Use transform() to Change a Sequence 211
Step-by-Step ... 211
Discussion 212
Example 212
Options and Alternatives 214
Perform Set Operations L. 217
Step-by-Step ... 217
Discussion 218
Example 219
Options and Alternatives 221
Permute aSequence 222
Step-by-Step ... 222
Discussion 222
Example 223
Options and Alternatives 224
Copy a Sequence from One Container to Another 225
Step-by-Step ... 225
Discussion 225
Example 226
Options and Alternatives 227
Replace and Remove Elements in a Container 227
Step-by-Step ... 228
Discussion 228
Example 228

Options and Alternatives 230

iX

Herb Schildt's C++ Programming Cookbook

Merge Two Sorted Sequences i il 231
Step-by-Step ... 231
Discussion 231
Example 232
Options and Alternatives 234

Create and Managea Heap L. 235
Step-by-Step ... 235
Discussion 235
Example 236
Options and Alternatives 238

Create an Algorithm o i i 238
Step-by-Step ... 238
Discussion 239
Example 240
Bonus Example: Use a Predicate with a Custom Algorithm 242
Options and Alternatives 244

Use a Built-In Function Object 245
Step-by-Step ... 245
Discussion 246
Example 246
Options and Alternatives 248

Create a Custom Function Object 248
Step-by-Step ... 249
Discussion 249
Example 250
Bonus Example: Use a Function Object to

Maintain State Information oo oL 253
Options and Alternatives 255

UseaBinder 255
Step-by-Step ... 256
Discussion 256
Example 257
Options and Alternatives L. 258

UseaNegator i 259
Step-by-Step ... 259
Discussion 260
Example 260
Options and Alternatives 261

Use the Pointer-to-Function Adaptor 262
Step-by-Step ... 262
Discussion 262
Example 263

Options and Alternatives 265

Contents

Use the Stream Iterators L. 265
Step-by-Step ... 266
Discussion 266
Example 269

Bonus Example: Create an STL-Based File Filter 272
Options and Alternatives 273

Use the Insert Iterator Adaptors 274
Step-by-Step ... 274
Discussion —.......... . 275
Example 275
Options and Alternatives 277
Working withI/O ... oo i 279
T/O OVeIVIEW .ot 280
CH+Streamso 280

The C++ Stream Classes i i .. 281

The Stream Class Specializations 285

C++'s Predefined Streams o il 287

The Format Flags 287

The I/O Manipulators L. 287
Checking for Errors 288
Openingand Closinga File 289
Write Formatted Datatoa TextFile 293
Step-by-Step 293
Discussion ... 294
Example 295
Options and Alternatives 296

Read Formatted Data froma TextFile 296
Step-by-Step 297
Discussion ... 297
Example ... 298
Options and Alternatives 300

Write Unformatted Binary DatatoaFile 300
Step-by-Step ... 301
Discussion ... 301
Example ... 302
Options and Alternatives 304

Read Unformatted Binary Data fromaFile 305
Step-by-Step ... 305
Discussion ... 306
Example ... 307
Options and Alternatives 309

Use get() and getline() to Read froma File 310
Step-by-Step 310

DiISCUSSION ..o 310

Xi

Xii

Herb Schildt's C++ Programming Cookbook

Example
Options and Alternatives
Read from and Writetoa File
Step-by-Step ...
Discussion
Example
Options and Alternatives
Detecting EOF
Step-by-Step ...
Discussion
Example
Bonus Example: A Simple File-Comparison Utility —..............
Options and Alternatives
Use Exceptions to Detect and Handle I/O Errors
Step-by-Step ...
Discussion
Example
Options and Alternatives
Use Random-Access File I/O o L
Step-by-Step ...
Discussion
Example
Bonus Example: Use Random-Access 1/0 to
Access Fixed-Size Records
Options and Alternatives
Look AheadinaFile i
Step-by-Step ...
Discussion
Example
Options and Alternatives
Use the String Streams i
Step-by-Step ...
Discussion
Example
Options and Alternatives
Create Custom Inserters and Extractors
Step-by-Step ...
Discussion
Example
Options and Alternatives
Create a Parameterless Manipulator
Step-by-Step ...
Discussion
Example
Options and Alternatives L.

Contents

Create a Parameterized Manipulator 348
Step-by-Step ... 348
Discussion 349
Example 350
Options and Alternatives L. 352
Obtain or Seta Stream's Locale L. 352
Step-by-Step ... 353
Discussion 353
Example 353
Options and Alternatives L. 355

Use the C-Based File System 355
Step-by-Step ... 356
Discussion —.......... . 356
Example 359
Options and Alternatives 361
Rename and Removea File il 363
Step-by-Step ... 363
Discussion 363
Example 364
Options and Alternatives L. 365
FormattingData i 367
Formatting Overview — 368
The FormatFlags 368

The Field Width, Precision, and Fill Character 369
Format-Related Stream Member Functions 370

The I/O Manipulators L. 370
Format Data Using the Localization Library 370

The printf() Family of Functions 371

The strftime() Function i, 371

Facet Overview 372
Access the Format Flags via Stream Member Functions 374
Step-by-Step ... 374
Discussion ... 374
Example 375
Bonus Example: Display the Format Flag Settings 376
Options and Alternatives 378
Display Numeric Values in Various Formats 379
Step-by-Step 379
Discussion ... 380
Example ... 380
Options and Alternatives 382
Setthe Precision i 383
Step-by-Step 383

DiISCUSSION ..o 383

Xiii

Xiv

Herb Schildt's C++ Programming Cookbook

Example
Options and Alternatives
Set the Field Width and Fill Character
Step-by-Step ...
Discussion
Example
Bonus Example: Line Up Columns of Numbers
Options and Alternatives
Justify Output
Step-by-Step ...
Discussion
Example
Options and Alternatives
Use I/O Manipulators to Format Data
Step-by-Step ...
Discussion
Example
Options and Alternatives
Format Numeric Values foraLocale
Step-by-Step ...
Discussion
Example
Options and Alternatives
Format Monetary Values Using the money_put Facet
Step-by-Step ...
Discussion
Example
Options and Alternatives
Use the moneypunct and numpunct Facets
Step-by-Step ...
Discussion
Example
Options and Alternatives L.
Format Time and Date Using the time_put Facet
Step-by-Step ...
Discussion
Example
Options and Alternatives
Format Dataintoa String il
Step-by-Step ...
Discussion
Example
Options and Alternatives
Format Time and Date Using strftime()
Step-by-Step ...
Discussion

Contents

Example 415
Options and Alternatives 417
Use printf() to Format Data 418
Step-by-Step ... 419
Discussion 419
Example 422
Options and Alternatives 424
Potpourri ...t i i i i e e 425
Operator Overloading Basic Techniques 426
Step-by-Step ... 426
Discussion 427
Example ... 432
Options and Alternatives L. 435
Overload the Function Call Operator () 437
Step-by-Step 437
Discussion 437
Example ... 439
Options and Alternatives 440
Overload the Subscripting Operator [| 441
Step-by-Step 441
Discussion 441
Example ... 442
Options and Alternatives L. 445
Overload the = Operator 445
Step-by-Step 446
Discussion 446
Example ... 446
Bonus Example: A Simple Safe Pointer Class 447
Options and Alternatives L 451
Overload new and delete i 451
Step-by-Step 451
Discussion 452
Example 453
Options and Alternatives L. 456
Overload the Increment and Decrement Operators 457
Step-by-Step ... 457
Discussion 457
Example 459
Options and Alternatives 462
Create a Conversion Function 463
Step-by-Step 463
Discussion 463
Example 464

Options and Alternatives 466

Xv

Xvi

Herb Schildt's C++ Programming Cookbook

Create a Copy Constructor i, 466
Step-by-Step ... 467
Discussion 467
Example 468
Bonus Example: A Safe Array that Uses Dynamic Allocation 471
Options and Alternatives 477

Determine an Object's Type at Runtime 478
Step-by-Step ... 479
Discussion 479
Example 480
Options and Alternatives 484

Use Complex Numbers i .. 484
Step-by-Step ... 485
Discussion 485
Example 486
Options and Alternatives 487

Useauto_ptr ... 487
Step-by-Step ... 488
Discussion 488
Example 489
Options and Alternatives 490

Create an Explicit Constructor 491
Step-by-Step ... 491
Discussion 491
Example 492
Options and Alternatives 494

Preface

ver the years, friends and readers have asked me to write a programming cookbook,

sharing some of the techniques and approaches that I use when I program. From the

start, I liked the idea, but was unable to make time for it in my very busy writing
schedule. As many readers know, I write extensively about several facets of programming,
with a special focus on C++, Java, and C#. Because of the rapid revision cycles of those
languages, I spend nearly all of my available time updating my books to cover the latest
versions. Fortunately, early in 2007, a window of opportunity opened and I was finally able
to devote time to the cookbook. The two most requested cookbooks were ones for Java and
C++. I began with Java, with the result being my Java programming cookbook. As soon as I
finished the Java book, I moved on to C++. The result is, of course, this book. I must admit
that both projects were among my most enjoyable.

Based on the format of a traditional food cookbook, this book distills the essence of
many general-purpose C++ techniques into a collection of step-by-step recipes. Each recipe
describes a set of key ingredients, such as classes, functions, and headers. It then shows the
steps needed to assemble those ingredients into a code sequence that achieves the desired
result. This organization makes it easy to find the technique in which you are interested and
then put that technique into action.

Actually, "into action" is an important part of this book. I believe that good programming
books contain two elements: solid theory and practical application. In the recipes, the step-by-
step instructions and discussions supply the theory. To put that theory into practice, each recipe
includes a complete code example. The examples demonstrate in a concrete, unambiguous
way how the recipes can be applied. In other words, the examples eliminate the "guess work"
and save you time.

Although no cookbook can include every recipe that one might desire (there is a nearly
unbounded number of possible recipes), I tried to span a wide range of topics. My criteria
for including a recipe are discussed in detail in Chapter 1, but briefly, I included recipes that
would be useful to many programmers and that answered frequently asked questions. Even
with these criteria, it was difficult to decide what to include and what to leave out. This was
the most challenging part of writing this book. Ultimately, it came down to experience,
judgment, and intuition. Hopefully, I have included something to satisfy every
programmer's taste!

HS

Xvii

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

xviii Herb Schildt's C++ Programming Cookbook

Example Code on the Web

The source code for all of the examples in this book is available free-of-charge on the Web at
www.mhprofessional.com.

More from Herbert Schildt

Herb Schildt's C++ Programming Cookbook is just one of Herb's many programming books.
Here are some others that you will find of interest.

To learn more about C++, you will find these books especially helpful:

C++: The Complete Reference

C++: A Beginner's Guide

C++ from the Ground Up

STL Programming from the Ground Up
The Art of C++

To learn about Java, we recommend:

Java: The Complete Reference

Java: A Beginner’s Guide

The Art of Java

Swing: A Beginner’s Guide

Herb Schildt’s Java Programming Cookbook

To learn about C#, we suggest the following Schildt books:

C#: The Complete Reference
C#: A Beginner’s Guide

If you want to learn about the C language, then the following title will be of interest:

C: The Complete Reference

When you need solid answers fast, turn to Herbert Schildt, the recognized
authority on programming.

www.mhprofessional.com

CHAPTER
Overview

his book is a collection of techniques that show how to perform various programming

tasks in C++. As the title implies, it uses the well-known "cookbook" format. Each

"recipe" illustrates how to accomplish a specific operation. For example, there are
recipes that read bytes from a file, reverse a string, sort the contents of a container, format
numeric data, and so on. In the same way that a recipe in a food cookbook describes a set of
ingredients and a sequence of instructions necessary to prepare a dish, each technique in
this book describes a set of key program elements and the sequence of steps necessary to
use them to accomplish a programming task.

Ultimately, the goal of this book is to save you time and effort during program
development. Many programming tasks consist of a set of standard functions and classes,
which must be applied in a specific sequence. The trouble is that sometimes you don't know
which functions to use or what classes are appropriate. Instead of having to wade through
reams of documentation and online tutorials to determine how to approach some task, you
can look up its recipe. Each recipe shows one way to craft a solution, describing the necessary
elements and the order in which they must be used. With this information, you can design a
solution that fits your specific need.

What's Inside

No cookbook is exhaustive. The author of a cookbook must make choices about what is and
isn't included. The same is true for this cookbook. In choosing the recipes for this book,
I focused on four main topic areas: string handling, the Standard Template Library (STL),
I/0, and formatting data. These are core topics that relate to a wide range of programmers.
They are also very large topics, which required many pages to explore in depth. As a result,
each of these topics became the basis for one or more chapters. It is important to state,
however, that the content of those chapters is not limited to only those topics. As most
readers know, just about everything in C++ is interrelated. In the process of creating recipes
for one aspect of C++, several others, such as localization, dynamic allocation, or operator
overloading, are often involved. Thus, recipes for the preceding topics often illustrate other
C++ techniques.

In addition to the recipes related to the main topic areas, I had several others that I
wanted to include but for which an entire chapter was not feasible. I grouped those recipes
into the final chapter. Several of these recipes focus on overloading C++'s more specialized

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

2 Herb Schildt's C++ Programming Cookbook

operators, such as [], —>, new, and delete. Others illustrate the use of the auto_ptr and
complex classes or show how to create a conversion function, a copy constructor, or an
explicit constructor. There is also a recipe that demonstrates runtime type ID.

Of course, choosing the topics was only the beginning of the selection process. Within
each category, I had to decide what to include and what not to include. In general, I included
a recipe if it met the following two criteria.

1. The technique is useful to a wide range of programmers.

2. It provides an answer to a frequently asked programming question.

The first criterion is largely self-explanatory. I included recipes that describe how to
accomplish a set of tasks that would commonly be encountered when creating C++
applications. Some of the recipes illustrate a general concept that can be adapted to solve
several different types of problems. For example, Chapter 2 shows a recipe that searches for
a substring within a string. This general procedure is useful in several contexts, such as
finding an e-mail address or a telephone number within a sentence, or extracting a keyword
from a database query. Other recipes describe more specific, yet widely used techniques. For
example, Chapter 6 shows how to format the time and date.

The second criterion is based on my experience as the author of programming books. Over
the many years that I have been writing, I have been asked hundreds and hundreds of "how
to" questions by readers. These questions come from all areas of C++ programming and range
from the very easy to the quite difficult. I have found, however, that a central core of questions
occurs again and again. Here is one example: "How do I format a number so that it has two
decimal places?" Here is another: "How do I create a function object?" There are many others.
These same types of questions also occur frequently on various programmer forums on the
Web. I used these commonly asked "how to" questions to guide my selection of recipes.

The recipes in this book span various skill levels. Some illustrate basic techniques, such
as reading bytes from a file or overloading the << operator to output objects of a class that
you create. Others are more advanced, such as using the localization library to format
monetary values, tokenizing a string, or overloading the [] operator. Thus, the level of
difficulty of an individual recipe can range from relatively easy to significantly advanced.
Of course, most things in programming are easy once you know how to do them, but
difficult when you don't. Therefore, don't be surprised if some recipe seems obvious. It just
means that you already know how to accomplish that task.

How the Recipes Are Organized

Each recipe in this book uses the same format, which has the following parts:

* A table of key ingredients used by the recipe.

¢ A description of the problem that the recipe solves.
¢ The steps necessary to complete the recipe.

* An in-depth discussion of the steps.

¢ A code example that puts the recipe into action.

* Options and alternatives that suggest other ways to craft a solution.

Chapter 1: Overview

A recipe begins by describing the task to accomplish. The key ingredients used by the
recipe are shown in a table. These include the functions, classes, and headers required to
create a solution. Of course, putting a recipe into practice may imply the use of additional
elements, but the key ingredients are those that are fundamental to the task at hand.

Each recipe then presents step-by-step instructions that summarize the procedure. These
are followed by an in-depth discussion of the steps. In many cases, the summary will be
sufficient, but the details are there if you need them.

Next, a code example is presented that shows the recipe in action. All code examples are
presented in their entirety. This avoids ambiguity and lets you clearly see precisely what
is happening without having to fill in additional details yourself. Occasionally, a bonus
example is included that further illustrates how a recipe can be applied.

Each recipe concludes with a discussion of various options and alternatives. This section
is especially important because it suggests different ways to implement a solution or other
ways to think about the problem.

A Few Words of Caution

There are a few important points that you should keep in mind when you use this book. First,
a recipe shows one way to craft a solution. Other ways may (and often do) exist. Your specific
application may require an approach that is different from the one shown. The recipes in this
book can serve as starting points, they can help you choose a general approach to a solution,
and they can spur your imagination. However, in all cases, you must determine what is and
what isn't appropriate for your application.

Second, it is important to understand that the code examples are not optimized for
performance. They are optimized for clarity and ease of understanding. Their purpose is to
clearly illustrate the steps of the recipe. In many cases, you will have little trouble writing
tighter, more efficient code. Furthermore, the examples are exactly that: examples. They are
simple uses that do not necessarily reflect the way that you will write code for your own
application. In all circumstances, you must create your own solution that fits the needs of
your application.

Third, each code example contains error handling that is appropriate for that specific
example, but may not be appropriate in other situations. In all cases, you must properly
handle the various errors and exceptions that can result when adapting a recipe for use in
your own code. Let me state this important point again: When implementing a solution, you
must provide error handling appropriate to your application. You cannot simply assume that
the way that errors or exceptions are handled (or not handled) by an example is sufficient or
adequate for your use. Typically, additional error handling will be required in real-world
applications.

C++ Experience Required

This book is for every C++ programmer, whether beginner or experienced pro. However, it
does assume that you know the fundamentals of C++ programming, including the C++
keywords and syntax, and have a general familiarity with the core library functions and
classes. You should also be able to create, compile, and run C++ programs. None of these
things are taught by this book. (This book is about applying C++ to a variety of real-world

4 Herb Schildt's C++ Programming Cookbook

programming problems. It is not about teaching the fundamentals of the C++ language.)
If you need to improve your C++ skills, I recommend my books C++: The Complete Reference,
C++ From the Ground Up, and C++: A Beginner’s Guide. All are published by McGraw-Hill, Inc.

What Version of C++?

The code and discussions in this book are based on the ANSI/ISO International Standard
for C++. Unless explicitly stated otherwise, no non-standard extensions are used. As a
result, the majority of techniques presented here are portable and can be used with any C++
compiler that adheres to the International Standard for C++. The code in this book was
developed and tested with Microsoft's Visual C++. Both Visual Studio and Visual C++
Express (which is available free of charge from Microsoft) were used.

NOTE At the time of this writing, the International Standard for C++ is in the process of being
updated. Many new features are being contemplated. However, none of them are formally part of
C++ at this time and are, therefore, not used in this book. Of course, future editions of this book
may make use of these new features.

Two Coding Conventions

Before moving on to the recipes, there are two issues to discuss that relate to how the code
in this book is written. The first relates to returning a value from main(). The second concerns
the use of namespace std. The following explains the decisions that I made relating to these
two features.

Returning a Value from main()
The code examples in this book always explicitly return an integer value from main().
By convention, a return value of zero indicates successful termination. A non-zero return
value indicates some form of error.

Explicitly returning a value from main() is not technically necessary, however, because
in the words of the International Standard for C++:

"If control reaches the end of main without encountering a return statement, the effect
is that of executing return 0;"

For this reason, you will occasionally find code that does not explicitly return a value from
main(), relying instead upon the implicit return value of zero. But this is not the approach
used by this book.

Instead, all of the main() functions in this book explicitly return a value because of two
reasons. First, some compilers issue a warning when a non-void method fails to explicitly
return a value. To avoid this warning, main() must include a return statement. Second, it
just seems good practice to explicitly return a value, given that main() is declared with an
int return type!

Using Namespace std?
One of the problems that a writer of a C++ book faces is whether or not to use the line:

using namespace std;

Chapter 1: Overview

near the top of each program. This statement brings the contents of the std namespace into
view. The std namespace contains the C++ standard library. Thus, by using the std namespace,
the standard library is brought into the global namespace, and names such as cout can be
referred to directly, rather than as std::cout.

The use of

using namespace std;

is both very common and occasionally controversial. Some programmers dislike it, suggesting
that it defeats the point of packaging the standard library into the std namespace and invites
conflicts with third-party code, especially in large projects. While this is true, others point out
that in short programs (such as the examples shown in this book) and in small projects, the
convenience it offers easily offsets the remote chance of conflicts, which seldom (if ever) occur
in these cases. Frankly, in programs for which the risk of conflicts is essentially zero, having to
always write std::cout, std::cin, std::ofstream, std::string, and so on is tedious. It also makes
the code more verbose.

The foregoing debate notwithstanding, this book uses

using namespace std;

in the example programs for two reasons. First, it makes the code shorter, which means that
more code can fit on a line. In a book, line-length is limited. Not having to constantly use
std:: shortens lines, which means that more code can fit on a single line without causing the
line to break. The fewer broken lines, the easier the code is to read. Second, it makes the code
examples less verbose, which enhances their clarity on the printed page. It has been my
experience that using namespace std is very helpful when presenting example programs
shown in a book. However, its use in the examples is not meant as an endorsement of the
technique in general. You must decide what is appropriate for your own programs.

5

This page intentionally left blank

CHAPTER
String Handling

why C++ is such a rich and powerful language. It lets the programmer choose the best

approach for the task at hand. Nowhere is this multifaceted aspect of C++ more evident
than in strings. In C++, strings are based on two separate but interrelated subsystems. One
type of string is inherited from C. The other is defined by C++. Together, they provide the
programmer with two different ways to think about and handle sequences of characters.

The first type of string supported by C++ is the null-terminated string. This is a char array
that contains the characters that comprise a string, followed by a null. The null-terminated
string is inherited from C and it gives you low-level control over string operations. As a
result, the null-terminated string offers a very efficient way in which to handle character
sequences. C++ also supports wide-character, null-terminated strings, which are arrays of
type wchar_t.

The second type of string is an object of type basic_string, which is a template class
defined by C++. Therefore, basic_string defines a unique type whose sole purpose is to
represent sequences of characters. Because basic_string defines a class type, it offers a high-
level approach to working with strings. For example, it defines many member functions
that perform various string manipulations, and several operators are overloaded for string
operations. There are two specializations of basic_string that are defined by C++: string
and wstring. The string class operates on characters of type char, and wstring operates on
characters of type wchar_t. Thus, wstring encapsulates a wide-character string.

As just explained, both null-terminated strings and basic_string support strings of types
char and wchar_t. The main difference between strings based on char and those based on
wchar_t is the size of the character. Otherwise, the two types of strings are handled in
essentially the same way. For the sake of convenience and because char-based strings are, by
far, the most common, they are the type of strings used in the recipes in this chapter. However,
the same basic techniques can be adapted to wide-character strings with little effort.

The topic of C++ strings is quite large. Frankly, it would be easy to fill an entire book
with recipes about them. Thus, limiting the string recipes to a single chapter presented quite
a challenge. In the end, I selected recipes that answer common questions, illustrate key
aspects of each string type, or demonstrate general principles that can be adapted to a wide
variety of uses.

I I There is almost always more than one way to do something in C++. This is one reason

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

8 Herb Schildt's C++ Programming Cookbook

Here are the recipes contained in this chapter:

¢ Perform Basic Operations on Null-Terminated Strings

* Search a Null-Terminated String

¢ Reverse a Null-Terminated String

¢ Ignore Case Differences When Comparing Null-Terminated Strings
* Create a Search-and-Replace Function for Null-Terminated Strings
¢ Categorize Characters Within a Null-Terminated String

¢ Tokenize a Null-Terminated String

e Perform Basic Operations on string Objects

¢ Search a string Object

¢ Create a Search-and-Replace Function for string Objects

¢ Operate on string Objects Through Iterators

¢ Create Case-Insensitive Search and Search-and-Replace Functions for string Objects
e Convert a string Object into a Null-Terminated String

e Implement Subtraction for string Objects

NOTE [n-depth coverage of null-terminated strings and the string class is found in my book
C++: The Complete Reference.

Overview of Null-Terminated Strings

The type of string most commonly used in a C++ program is the null-terminated string. As
mentioned, a null-terminated string is an array of char that ends with a null character. Thus, a
null-terminated string is not a unique type of its own. Rather, it is a convention that is recognized
by all C++ programmers. The null-terminated string was defined by the C language and is
still widely used by C++ programmers. It is also commonly referred to as a char * string, or
sometimes as a C string. Although null-terminated strings are familiar territory to most C++
programmers, it is still useful to review their key attributes and capabilities.

There are two main reasons why null-terminated strings are widely used in C++. First,
all string literals are represented as null-terminated strings. Therefore, whenever you create
a string literal, you are creating a null-terminated string. For example, in the statement

const char *ptr = "Hello";

the literal "Hello" is a null-terminated string. This means that it is a char array that contains
the characters Hello and is terminated by a null. In this statement, a pointer to the array is
assigned to ptr. As a point of interest, notice that ptr is specified as const. Standard C++
specifies that string literals are arrays of type const char. Therefore, it is best to use a const
char * pointer to point to one. However, the current standard also defines an automatic (but
deprecated) conversion to char *, and it is quite common to see code in which the const

is omitted.

Chapter 2: String Handling

The second reason why null-terminated strings are widely used is efficiency. Using an
array terminated by a null to hold a string allows many string operations to be implemented
in a streamlined fashion. (Essentially, null-terminated string operations are simply specialized
array operations.) For example, here is one way to write the standard library function strcpy(),
which copies the contents of one string to another.

// One way to implement the standard strcpy() function.
char *strcpy(char *target, const char *source) ({
char *t = target;

// Copy the contents of source into target.
while (*source) *target++ = *source++;

// Null-terminate the target.
*target = '\0';

// Return pointer to the start of target.
return t;

1
Pay special attention to this line:
while (*source) *target++ = *source++;

Because the source string ends with a null character, a very efficient loop can be created that
simply copies characters until the character pointed to by source is null. Recall that in C++,
any non-zero value is true, but zero is false. Since the null character is zero, the while loop
stops when the null terminator is encountered. Loops like the one just shown are common
when working with null-terminated strings.

The standard C++ library defines several functions that operate on null-terminated
strings. These require the header <cstring>. These functions will, no doubt, be familiar to
many readers. Furthermore, the recipes in this chapter fully explain the string functions that
they employ. However, it is still helpful to briefly list the commonly used null-terminated
string functions.

Function Description

char *strcat(char *str1, const char *str2) Concatenates the string pointed to by str2 to the end of

the string pointed to by strl. Returns strl. If the strings
overlap, the behavior of strcat() is undefined.

char *strchr(const char *str, int ch) Returns a pointer to the first occurrence of the low-order

byte of ch in the string pointed to by str. If no match is
found, a null pointer is returned.

int strcmp(const char *str1, const char str2) Lexicographically compares the string pointed to by str1

with the string pointed to by str2. Returns less than zero
if strl is less than str2, greater than zero if strl is greater
than str2, and zero if the two strings are the same.

10 Herb Schildt's C++ Programming Cookbook

Function

Description

char *strcpy(char *target,
const char *source)

Copies the string pointed to by source to the string pointed
to by target. Returns target. If the strings overlap, the
behavior of strepy() is undefined.

size_t strcspn(const char *strl,
const char *str2)

Returns the index of the first character in the string
pointed to by str1 that matches any character in the string
pointed to by str2. If no match is found, the length of str1
is returned.

size_t strlen(const char *str)

Returns the number of characters in the string pointed to
by str. The null terminator is not counted.

char *strncat(char *str1,
const char *str2,
size_t count)

Concatenates not more than count characters from
the string pointed to by str2 to the end of strl. Returns
strl. If the strings overlap, the behavior of strnecat() is
undefined.

int strncmp(const char *strl,
const char *str2,
size_t count)

Lexicographically compares not more than the first count
characters in the string pointed to by str1 with the string
pointed to by str2. Returns less than zero if strl is less
than str2, greater than zero if strl is greater than str2, and
zero if the two strings are the same.

char *strncpy(char *target,
const char *source,
size_t count)

Copies not more than count characters from the string
pointed to by source to the string pointed to by target.

If source contains less than count characters, null
characters will be appended to the end of target until
count characters have been copied. However, if source is
longer than count characters, the resultant string will not
be null-terminated. Returns target. If the strings overlap,
the behavior of strenpy() is undefined.

char *strpbrk(const char *str1,
const char *str2)

Returns a pointer to the first character in the string
pointed to by str1 that matches any character in the string
pointed to by str2. If no match is found, a null pointer is
returned.

char *strrchr(const char *str, int ch)

Returns a pointer to the last occurrence of the low-order
byte of ch in the string pointed to by str. If no match is
found, a null pointer is returned.

size_t strspn(const char *strl,
const char *str2)

Returns the index of the first character in the string
pointed to by strl that does not match any of the
characters in the string pointed to by str2.

char *strstr(const char *str1,
const char *str2)

Returns a pointer to the first occurrence of the string
pointed to by str2 in the string pointed to by strl. If no
match is found, a null pointer is returned.

char *strtok(char *str, const char *delims)

Returns a pointer to the next token in the string pointed
to by str. The characters in the string pointed to by delims
specify the delimiters that determine the boundaries of a
token. A null pointer is returned when there is no token to
return. To tokenize a string, the first call to strtok() must
have str point to the string to be tokenized. Subsequent
calls must pass a null pointer to str.

Chapter 2: String Handling

Notice that several of the functions, such as strlen() and strspn(), use the type size_t.
This is some form of unsigned integer and it is defined by <cstring>.

The <cstring> header also defines several functions that begin with the "mem" prefix.
These functions operate on characters, but do not use the null-terminator convention. They
are sometimes useful when manipulating strings and can also be used for other purposes.
The functions are memchr(), memcmp(), memcpy(), memmove(), and memset(). The first
three operate similar to strchr(), stremp(), and strepy(), respectively, except that they take
an extra parameter that specifies the number of characters on which to operate. The memset()
function sets a block of memory to a specified value. The memmove() function moves a
block of characters. Unlike memcpy(), memmove() can be used to move characters in
overlapping arrays. It is the only "mem" function used in this chapter and is shown here:

void *memmove(void *farget, const void *source, size_t count)

It copies count characters from the array pointed to by source into the array pointed to by
target. It returns target. As mentioned, the copy takes place correctly, even if the arrays
overlap. However, in this case, the array pointed to by source may be modified (even though
source is specified as const).

NoOTE Microsoft's Visual C++ "deprecates” (no longer recommends the use of) several standard
string functions, such as strepy(), for security reasons. For example, Microsoft recommends
using strcpy_s() instead. However, these alternatives are not defined by Standard C++ and are
non-standard. Therefore, this book will use the functions specified by the International Standard
for C++.

Overview of the string Class

Although null-terminated strings are very efficient, they do suffer from two problems. First,
they do not define a type. That is, representing a string as an array of characters terminated
by a null is a convention. Although this convention is well understood and widely recognized,
it is not a data type in the normal sense. (In other words, the null-terminated string is not
part of C++'s type system.) As a result, null-terminated strings cannot be manipulated by
operators. For example, you cannot concatenate two null-terminated strings by using the

+ operator or use = to assign one null-terminated string to another. Therefore, the following
sequence won't work:

// This sequence is in error.

char strA[] = "alpha";

char strB[] = "beta";

char strC[10] = strA + strB; // Oops! Won't work!

Instead, you must use calls to library functions to perform these operations, as shown next:

// This sequence works.
char strA[] = "alpha";
char strB[] = "beta";
char strC[10];

strcpy (strC, strA);
strcat (strC, strB);

12

Herb Schildt's C++ Programming Cookbook

This corrected sequence uses strcpy() and strcat() to assign strC a string that contains the
concatenation of strA and strB. Although it does achieve the desired result, manipulating
strings through the use of functions rather than operators makes even the most rudimentary
operations a bit clumsy.

The second problem with null-terminated strings is the ease with which errors can be
created. In the hands of an inexperienced or careless programmer, it is very easy to overrun
the end of the array that holds a string. Because C++ provides no boundary-checking on
array (or pointer) operations, there is nothing that prevents the end of an array from being
exceeded. For example, the standard strepy() function has no way to know if the target
array is being exceeded. Therefore, if the source string contains more characters than the
target array can hold, the target array will be overrun. In the best case, an array overrun
simply crashes the program. However, in the worst case, it results in a security breach based
on the now notorious "buffer overrun" attack.

Because of the desire to integrate strings into the overall C++ type system and to
prevent array overruns, a string data type was added to C++. The string type is based on
the template class basic_string, which is declared in the <string> header. As mentioned,
there are two specializations of this class: string and wstring, which are also declared in
<string>. The string class is for char-based strings. The wstring class is for wide character
strings based on wchar_t. Other than the type of characters, the two specializations work
essentially the same. Since char-based strings are, by far, the most commonly used, the
following discussion and all of the recipes use string, but most of the information can be
readily adapted to wstring.

The string class creates a dynamic data type. This means that a string instance can grow
as needed during runtime to accommodate an increase in the length of the string. Not only
does this eliminate the buffer overrun problem, but it also frees you from having to worry
about specifying the correct length for a string. The string class handles this for you
automatically.

The string class defines several constructors and many functions. Here are three
commonly used constructors:

string(const Allocator &alloc = Allocator())

string(const char *str, const Allocator &alloc = Allocator())

string(const string &str, size_type start_idx = 0, size_type num = npos,
const Allocator &alloc = Allocator())

The first form creates an empty string object. The second creates a string object from the
null-terminated string pointed to by str. This form lets you create a string from a null-
terminated string. The third form creates a string from another string. The string being
created contains num characters from str, beginning at the index specified by start_idx.
Frequently, in the third constructor, the parameters start_idx and num are allowed to default.
In this case, start_idx contains zero (indicating the start of the string) and num contains the
value of npos, which (in this case) indicates the length of the longest possible string. In all
cases, notice that the constructors allow an allocator to be specified. This is an object of type
Allocator and it provides memory allocation for the string. Most often, this argument is
allowed to default, which results in the default allocator being used.

Chapter 2: String Handling

Here is the way the constructors look when the argument defaults are used, which is

often the case:

string()

string(const char *str)
string (const string &str)

These all use the default allocator. The first creates an empty string. The second and third
create a string that contains str.

The string class defines many functions, with most having several overloaded forms.
Thus, a full description of each string function is not practical. Instead, the individual
recipes describe in detail the functions that they employ. However, to give you an idea of
the power available within string, here is a list of its core functions, grouped into categories.

The following functions search the contents of a string:

find Returns the index at which the first occurrence of a substring or character
is found within the invoking string. Returns npos if no match is found.
rfind Returns the index at which the last occurrence of a substring or character
is found within the invoking string. Returns npos if no match is found.
find_first_of Searches the invoking string for the first occurrence of any character
contained within a second string and returns the index within the invoking
string at which the match is found. Returns npos if no match is found.
find_last_of Searches the invoking string for the last occurrence of any character

contained within a second string and returns the index within the invoking
string at which the match is found. Returns npos if no match is found.

find_first_not_of

Searches the invoking string for the first occurrence of any character not
contained within a second string and returns the index within the invoking
string at which the mismatch is found. Returns npos if no match is found.

find_last_not_of

Searches the invoking string for the last occurrence of any character not
contained within a second string and returns the index within the invoking
string at which the mismatch is found. Returns npos if no match is found.

The next set of string functions alters the contents of a string:

append Appends a string to the end of the invoking string.

assign Assigns a new string to the invoking string.

clear Removes all characters from the invoking string.

copy Copies a range of characters from the invoking string into an array.

erase Removes one or more characters from the invoking string.

insert Inserts a string, substring, or one or more characters into the invoking
string.

push_back Adds a character to the end of the invoking string.

replace Replaces a portion of the invoking string.

resize Shortens or lengthens the invoking string. When shortening, characters
may be lost.

swap Exchanges two strings.

13

14 Herb Schildt's C++ Programming Cookbook

The next functions return information about a string object:

capacity Returns the number of characters that the invoking string can hold without
more memory being allocated.

c_str Returns a pointer to a null-terminated string that contains the same
characters as those contained in the invoking string.

data Returns a pointer to an array that contains the characters in the invoking
string. This array is not null-terminated.

empty Returns true if the invoking string is empty.

length Returns the number of characters currently held in the invoking string.

max_size Returns the maximum size of a string.

size Same as length.

The next set of functions supports iterators:

begin Returns an iterator to the start of the string.
end Returns an iterator to the location that is one past the end of the string.
rbegin Returns a reverse iterator to the end of the string.
rend Returns a reverse iterator to the location that is one before the start
of the string.

The next two functions obtain a substring or a character from a string:

at Returns a reference to the character at a specified index within the invoking
string.

substr Returns a string that is a substring of the invoking string. The starting index
and number of characters in the substring are specified.

In addition to the functions just shown, there are two more. You can compare two strings
by calling compare(). You can cause a string to allocate sufficient memory to hold a specific
number of characters by calling reserve(). Because a string is a dynamic data structure,
pre-allocating memory in advance prevents the need for costly reallocations as the string grows
in length. Of course, this is helpful only if you know in advance the size of the largest string.

The string class also defines several types, including size_type, which is some form of
unsigned integer that is capable of holding a value equal to the length of the largest string
supported by the implementation. The type of character held by a string is defined by
value_type. The string class also declares several iterator types, including iterator and

reverse_iterator.

The string class declares a static const variable, called npos, of type size_type. This
value is then initialized to —1. This results in npos containing the largest unsigned value
that size_type can represent. Thus, in all cases, npos represents a value that is at least
one larger than the size of the longest string. The npos variable is typically used to indicate

Chapter 2: String Handling

the "end of string" condition. For example, if a search fails, npos is returned. It is also used
to request that some operation take place through the end of a string.

A number of operators have been overloaded to apply to string objects. They are
shown here:

Operator Meaning

= Assignment

+ Concatenation

+= Concatenation assignment
== Equality

1= Inequality

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
[1] Subscripting

<< Output

>> Input

These operators allow the use of string objects in expressions and eliminate the need for
calls to functions like strcpy(), strcat(), or stremp(), which are required for null-terminated
strings. For example, you can use a relational operator such as < to compare two string
objects, assign one string object to another by use of the = operator, and concatenate two
string objects with the + operator.

In general, you can mix string objects with null-terminated strings within an expression,
as long as the desired outcome is a string object. For example, the + operator can be used to
concatenate a string object with another string object or a string object with a C-style string.
That is, the following variations are supported:

string + string
string + C-string
C-string + string

Also, you can use the = to assign a null-terminated string to a string object or compare
a string object with a null-terminated string by use of the relational operators.

There is another important aspect to the string class: It is also an STL-compatible container.
The string class supports iterators and functions such as begin(), end(), and size(), which
must be implemented by all containers. Because string is a container, it is compatible with the
other standard containers, such as vector. It can also be operated on by the STL algorithms.
This gives you extraordinary power and flexibility when handling strings.

Taken as a whole, the string class makes string handling exceedingly convenient and
trouble-free. You can perform most common string operations through operators, and string's
rich assortment of member functions make tasks such as searching, replacing, and comparing

15

16 Herb Schildt's C++ Programming Cookbook

strings easy and relatively error-free. You don't need to worry about overrunning an array, for
example, when you assign one string to another. In general, the string type offers safety and
convenience that far exceeds that of null-terminated strings.

Despite the advantages of the string class, null-terminated strings are still widely used
in C++. One reason (as explained earlier) is that string literals are null-terminated strings.
Another reason is that all of the power of string comes at a price. In some cases, operations
on string objects are slower than operations on null-terminated strings. Therefore, for
applications in which high performance is a principal concern and the benefits of string are
not needed, null-terminated strings are still a good choice. It is important to state, however,
that for many other uses, the string class is the best choice.

String Exceptions

Although string handling via string avoids many of the mishaps that are common with
null-terminated strings, it is still possible to generate errors. Fortunately, when an error
occurs when manipulating a string, an exception results, rather than a program crash or a
security breach. This gives you a chance to rectify the error, or at least perform an orderly
shutdown.

There are two exceptions that can be generated when working with string objects. The
first is length_error. This exception is thrown when an attempt is made to create a string
that is longer than the longest possible string. This could happen in a number of different
cases, such as when concatenating strings or inserting one substring into another. The
length of the longest possible string is found by calling the max_size() function. The second
exception is out_of_range. It is thrown when an argument is out of range. Both of these
exceptions are declared in <stdexcept>. Because none of the examples in this chapter
generate these exceptions, the examples do not explicitly handle them. However, in your
own applications, you might need to do so.

ra

~ Perform Basic Operations on Null-Terminated Strings

I Key Ingredients

Headers Classes Functions

<cstring> char *strcat(char *strl, const char *str2)
int strcmp(const char *str1, const char *str2)
char *strcpy(char *target, const char *source)
size_t strlen(const char *str)

This recipe shows how to perform the following basic null-terminated string operations:

¢ Obtain the length of a string.
¢ Copy a string.

Chapter 2: String Handling

¢ Concatenate one string to the end of another.

¢ Compare two strings.

These are the operations that are commonly needed whenever null-terminated strings are
used in a C++ program. They will be familiar to many readers—especially those who have
a background in C programming. We begin with them because they illustrate fundamental
concepts related to working with null-terminated strings. They also illustrate why you must
be careful to avoid buffer overrun errors when using null-terminated strings.

Step-by-Step

To perform the basic null-terminated string operations involves these steps:

1. Include the header <cstring>.

2. To obtain the length of a string, call strlen().

3. To copy one string to another, call strcpy().

4. To concatenate one string to the end of another, call strcat().

5. To compare two strings, call stremp().

Discussion

The functions that support null-terminated strings are declared in the header <cstring>.
Thus, a program that uses these (or the other functions that operate on null-terminated
strings) must include this header.

To obtain the length of a null-terminated string, call strlen(), shown here:

size_t strlen(const char *str)

It returns the number of characters in the string pointed to by str. As explained in the
overview, a null-terminated string is simply an array of characters that is terminated with
a null. The value returned by strlen() does not include the null terminator. Thus, the string
"test" has a length of 4. Understand, however, that the array that will hold "test" must be at
least five characters long so that there is room for the null terminator. The type size_t is some
form of unsigned integer that is capable of representing the result of the sizeof operations.
Thus, it is a type that is capable of representing the length of the longest string.

To copy one null-terminated string to another, use strepy(), shown next:

char *strcpy(char *target, const char *source)

This function copies the characters in the string pointed to by source into the array pointed to
by target. The result is null-terminated. In all cases, you must ensure that the array pointed to
by target is large enough to hold the characters pointed to by source. If you don't, the copy
will overwrite the end of the target array. This will corrupt your program and is one way that
the notorious "buffer overrun attack” can be generated. The function returns farget.

To concatenate one null-terminated string to the end of another, call strcat():

char *strcat(char *str1, const char *str2)

17

18

Herb Schildt's C++ Programming Cookbook

This function copies the characters in the string pointed to by str2 to the end of the string
pointed to by str1. The resulting string is null-terminated. It is imperative that the array pointed
to by strl be large enough to hold the resulting string. If it isn't, an array overrun will occur.
This will also corrupt your program and is another way that a buffer overrun attack can
occur. The function returns str1.

You can lexicographically compare (compare using dictionary order) two strings using
stremp(), shown next:

int stremp(const char *str1, const char *str2)

It returns zero if the two strings are the same. Otherwise, it returns less than zero if the
string pointed to by str1 is less than the string pointed to by str2 and greater than zero if the
string pointed to by str1 is greater than the string pointed to by str2. The comparison is
case-sensitive.

Example

The following example shows strepy(), strcat(), stremp(), and strlen() in action:
// Demonstrate the basic null-terminated string functions.

#include <iostreams>

#include <cstring>

using namespace std;

int main() {
char strA([7] = "Up";
char strB[5] = "Down";
char strC[5] = "Left";
char strD[6] = "Right";
cout << "Here are the strings: " << endl;
cout << "strA: " << strA << endl;
cout << "strB: " << strB << endl;
cout << "strC: " << strC << endl;
cout << "strD: " << strD << "\n\n";

// Display the length of strA.
cout << "Length of strA is " << strlen(strA) << endl;

// Concatenate strB with strA.

strcat (strA, strB);

cout << "strA after concatenation: " << strA << endl;
cout << "Length of strA is now " << strlen(strhA) << endl;

// Copy strC into strB.
strcpy (strB, strC);
cout << "strB now holds: " << strB << endl;

// Compare strings.
if (!strcmp (strB, strQ))
cout << "strB is equal to strC\n";

Chapter 2: String Handling

int result = strcmp(strC, strD);
if (!result)

cout << "strC is equal to strD\n";
else if (result < 0)

cout << "strC is less than strD\n";
else if (result > 0)

cout << "strC is greater than strD\n";

return O;

}
The output is shown here:

Here are the strings:

strA: Up
strB: Down
strC: Left

strD: Right

Length of strA is 2

strA after concatenation: UpDown
Length of strA is now 6

strB now holds: Left

strB is equal to strC

strC is less than strD

Notice how the array that holds strA was declared to be larger than needed to hold its
initial string. This extra room allows it to accommodate the concatenation of strB. Also,
notice how strB and strC are the same size. This makes it possible to copy the contents of
strC into strB. Remember, in all cases, the array that receives the result of a string copy or
concatenation must be large enough. For example, in the preceding program, attempting to
copy strD into strC would cause an error, because strC is only five elements long, but strD
requires six elements (five for the characters in Right and one for the null terminator).

Options and Alternatives

In cases in which you do not know at compile time whether the length of the target array is
sufficient to hold the result of a string copy or concatenation, you will need to confirm that
fact at runtime prior to attempting the operation. One way to do this is to use sizeof to
determine the size of the target array. For example, assuming the preceding example
program, here is one way to add a "safety check" that ensures that strA is large enough to
hold the concatenation of both strA and strB:

if (sizeof (strA) > strlen(strA) + strlen(strB)) strcat(strA, strB);

Here, the size of the target array is obtained by calling sizeof on the array. This returns the
length of the array in bytes, which for arrays of type char equals the number of characters in
the array. This value must be greater than the sum of the two strings that will be concatenated.
(Remember, one extra character is needed to hold the null terminator.) By using this approach,
you ensure that the target array will not be overrun.

19

20

Search a Null-Terminated String

Herb Schildt's C++ Programming Cookbook

NOTE The preceding technique for preventing an array overrun works for char strings, not
for wehar_t strings. For wchar_t strings, you will need to use an expression like
if (sizeof (strA) > wcslen(strA)*sizeof (wchar t) +
wcslen (strB) *sizeof (wchar t)) // ...
This takes into consideration the size of a wide character.

Sometimes you may want to operate on only a portion of a string, rather than the entire
string. For example, you might want to copy just part of one string to another or compare
only a portion of two strings. C++ includes functions that handle these types of situations.
They are strncpy(), strncat(), and strnemp(). Each is described next.

To copy only a portion of one string to another, use strncpy(), shown here:

char *strncpy(char *target, const char *source, size_t count)

This function copies not more than count characters from source to target. If source contains
less than count characters, null characters will be appended to the end of target until count
characters have been copied. However, if the string pointed to by source is longer than count
characters, the resultant string pointed to by target will not be null-terminated. It returns target.
You can concatenate only a portion of a string to another by calling strncat(), shown next:

char *strncat(char *str1, const char *str2, size_t count)

It concatenates not more than count characters from the string pointed to by str2 to the end
of strl. It returns strl.
To compare a portion of one string to another, use strncmp(), shown next:

int strncmp(const char *str1, const char *str2, size_t count)

The strnemp() function compares not more than the first count characters in the string pointed
to by strl with the string pointed to by str2. It returns less than zero if str1 is less than str2,
greater than zero if str1 is greater than str2, and zero if the two strings are the same.

Key Ingredients

Headers Classes Functions

<cstring> char *strchr(const char *str, int ch)
char *strpbrk(const char *str1, const char *str2)
char *strstr(const char *str1, const char *str2)

Another common part of string handling involves searching. Here are three examples. You
might want to know whether a string contains the substring ".com" or ".net" when

Chapter 2: String Handling

processing an Internet address. You might want to find the first period in a file name so that
you can separate the file's name from its extension. You might want to scan a billing log for
occurrences of the string "Past Due" so that you can count the number of past due accounts.
To handle these types of tasks, C++ provides functions that search a null-terminated string.
This recipe demonstrates several of them. Specifically, it shows how to search a string for a
specific character, for any of a set of characters, or for a substring.

Step-by-Step
To search a string involves the following steps:
1. To search for a specific character, call strchr().
2. To search for any of a set of characters, call strpbrk().

3. To search for a substring, call strstr().

Discussion
To find the first occurrence of a given character within a string, call strchr(), shown here:

char *strchr(const char *str, int ch)

It returns a pointer to the first occurrence of the low-order byte of ¢/ in the string pointed to
by str. If no match is found, a null pointer is returned.

To find the first occurrence of any character within a set of characters, call strpbrk(),
shown next:

char *strpbrk(const char *str1, const char *str2)

This function returns a pointer to the first character in the string pointed to by str1 that
matches any character in the string pointed to by str2. If no match is found, a null pointer is
returned.

To find the first occurrence of a given substring within a string, call strstr(), shown here:

char *strstr(const char *str1, const char *str2)

It returns a pointer to the first occurrence of the string pointed to by str2 within the string
pointed to by strl. If no match is found, a null pointer is returned.

Example

The following example demonstrates strchr(), strpbrk(), and strstr():
// Search a null-terminated string.

#include <iostream>

#include <cstrings>

using namespace std;

int main() {

const char *url = "HerbSchildt.com";
const char *url2 = "Apache.org";

2

Herb Schildt's C++ Programming Cookbook

const char *emailaddr = "Herb@HerbSchildt.com";
const char *tld[] = { ".com", ".net", ".org" };
const char *p;
// First, determine if url and url2 contain .com, .net, or .org.
for(int i1=0; i < 3; i++) {
p = strstr(url, tld[i]);

if (p) cout << url << " has top-level domain " << tld[i] << endl;

p = strstr(url2, tld[i]);

if (p) cout << url2 << " has top-level domain " << tld[i] << endl;
1
// Search for a specific character.
p = strchr(emailaddr, '@');
if (p) cout << "Site name of e-mail address is: " << p+l << endl;

// Search for any of a set of characters. In this case,
// find the first @ or period.
p = strpbrk(emailaddr, "@.");

if (p) cout << "Found " << *p << endl;

return O;

}
The output is shown here:

HerbSchildt.com has top-level domain .com
Apache.org has top-level domain .org

Site name of e-mail address is: HerbSchildt.com
Found @

Options and Alternatives

In addition to the search functions used by this recipe, there are several others supported
by C++. Two that are especially helpful in some cases are strspn() and strespn(). They are
shown here:

size_t strspn(const char *str1, const char *str2)
size_t strcspn(const char *str1, const char *str2)

The strspn() function returns the index of the first character in the string pointed to by str1
that does not match any of the characters in the string pointed to by str2. The strespn()
function returns the index of the first character in the string pointed to by str1 that matches
any character in the string pointed to by str2.

You can find the last occurrence of a character within a null-terminated string by
calling strrchr():

char *strrchr(const char *str, int ch)

Chapter 2: String Handling

It returns a pointer to the last occurrence of the low-order byte of ch in the string pointed to
by str. If no match is found, a null pointer is returned.

The strtok() function is also used to search a string. It is described in its own recipe. See
Tokenize a Null-Terminated String.

ra

‘. Reverse a Null-Terminated String

I Key Ingredients

Headers Classes Functions

<cstring> size_t strlen(char *str)

This recipe shows how to perform one simple, yet useful task. It reverses a null-terminated
string. Although reversing a string is an easy operation for the experienced programmer, it is
a common source of questions from beginners. For this reason alone it merits inclusion in this
book. However, there are several other reasons to include this recipe. First, there are many
ways to reverse a string, and each variation illustrates a different technique for handling a
null-terminated string. Second, the basic mechanism used to reverse a string can be adapted
to other types of string manipulations. Finally, it demonstrates in very practical terms how
handling null-terminated strings often relies on fairly low-level, hands-on code. Often, such
code can be highly efficient, but it requires more work than using the string class.

The recipe shown here reverses the string in place. This means that the original string is
modified. This is often what is needed. However, a variation that creates a reverse copy of
the string is shown in the Options and Alternatives section for this recipe.

Step-by-Step

There are many ways to approach the task of reversing a string. This recipe uses a simple,
yet effective method that is based on swapping end-to-end corresponding characters in the
string. It puts this code inside a function called revstr().

1. Create a function called revstr() that has this prototype:
void revstr(char *str);
The string to be reversed is passed to str.

2. Inside revstr(), create a for loop that controls two variables that will be used to
index the array that holds the string. Initialize the first variable to zero and
increment it each time through the loop. Initialize the second variable to the index
of the last character in the string and decrement it with each iteration. This value is
obtained by calling strlen().

3. With each pass through the loop, swap the characters at the two indexes.

4. Stop the loop when the first index is equal to or greater than the second index. At
this point, the string has been reversed.

24

Herb Schildt's C++ Programming Cookbook

Discussion

As most readers know, when an array name is used by itself, without an index, it represents
a pointer to the array. Therefore, when you pass an array to a function, you are actually
passing only a pointer to that array. This means that a function that will receive a null-
terminated string as an argument must declare its parameter to be of type char *. This is
why the str parameter to revstr() is declared as char *str.

Although str is a pointer, it can be indexed like an array, using the normal array-indexing
syntax. To reverse the contents of the string, create a for loop that controls two variables,
which serve as indexes into the string. One index starts at zero and indexes from the
beginning of the string. The other index starts at the last character in the string. Each time
through the loop, the characters at the specified indexes are exchanged. Then, the first index
is incremented and the second index is decremented. When the indexes converge (that is,
when the first index is equal to or greater than the second index), the string is reversed. Here
is one way to write this loop:

int i, J;
char t;

for(i = 0, j = strlen(str)-1; i < J; ++i, --3) {
// Exchange corresponding characters, front to back.
t = strl[i];
str[i] = strlj]l;
str([j] t;

Notice that the index of the last character in the string is obtained by subtracting one
from the value returned by strlen(). Its prototype is shown here:

size_t strlen(const char *str)

The strlen() function returns the length of a null-terminated string, which is the number of
characters in the string. However, the null terminator is not counted. Since array indexing in
C++ begins at zero, 1 must be subtracted from this value to obtain the index of the last
character in the string.

Example
Putting together the pieces, here is one way to write the revstr() function:

// Reverse a string in place.
void revstr(char *str) ({

int 1, j;

char t;

for(i = 0, j = strlen(str)-1; i < j; ++i, --3) {
// Exchange corresponding characters, front to back.
t = strlil;
str[il = str(jl;

str[j] = t;

}

Chapter 2: String Handling

The following program shows revstr() in action:
// Reverse a string in place.

#include <iostream>
#include <cstring>

using namespace std;

void revstr (char *str);

int main() {
char str[] = "abcdefghijklmnopgrstuvwxyz";
cout << "Original string: " << str << endl;

revstr (str) ;
cout << "Reversed string: " << str << endl;

return O;

}

// Reverse a string in place.
void revstr(char *str) ({

int i, j;

char t;

for(i = 0, j = strlen(str)-1; i < j; ++i, --3) {
t = strli];
str[i] = str(jl;
str[j] = t;

}
The output is shown here:

Original string: abcdefghijklmnopgrstuvwxyz
Reversed string: zyxwvutsrgponmlkjihgfedcba

Options and Alternatives

Although reversing a null-terminated string is a simple task, it does allow a number of
interesting variations. For example, the approach used in the recipe relies on array indexing,
which is probably the clearest way to implement this function. It may not be, however, the
most efficient. One alternative is to use pointers rather than array indexing. Depending
upon what compiler you are using (and what optimizations are turned on), pointer
operations can be faster than array indexing. Also, many programmers simply prefer the
use of pointers rather than array indexing when cycling through an array in a strictly

25

26

Herb Schildt's C++ Programming Cookbook

sequential fashion. Whatever the reason, the pointer version is easy to implement. Here is
one way to rework revstr() so that it substitutes pointer operations for array indexing;:

// Reverse a string in place. Use pointers rather than array indexing.
void revstr(char *str) ({

char t;
char *inc_p = str;
char *dec_p = &strlstrlen(str)-11;

while (inc_p <= dec_p) {

t = *inc_p;
*inc p++ = *dec p;
*dec_p-- = t;

}
}

One of the more interesting approaches to reversing a string makes use of recursion.
Here is one implementation:

// Reverse a string in place by using recursion.
void revstr r(char *str) (
revstr recursive(str, 0, strlen(str)-1);

}

// This function is called with a pointer to the string to reverse
// and the beginning and ending indexes of the characters to reverse.
// Thus, its first call passes zero for start and strlen(str)-1 for
// end. The position of the null terminator does not change.
void revstr recursive(char *str, int start, int end) {
if (start < end)
revstr recursive (str, start+l, end-1);
else
return;

char t = str[start];
str[start] = str[end];
str[end] = t;

}

Notice that revstr_r() calls revstr_recursive() to actually reverse the string. This lets revstr_r()
be called with just a pointer to the string. Notice how the recursive calls reverse the string.
When start is less than end, a recursive call to revstr_recursive() is made, with the beginning
index incremented by one and the ending index decremented by one. When these two
indexes meet, the return statement is executed. This causes the recursive calls to begin
returning, with corresponding characters being exchanged. As a point of interest, the same
general technique can be used to reverse the contents of any type of array. Its use on a null-
terminated string is simply a special case.

The last alternative presented here works differently from the previous approaches
because it creates a copy of the original string that contains the reverse of the original string.
Thus, it leaves the original string unchanged. This technique is useful when the original
string must not be modified.

Chapter 2: String Handling

// Make a reverse copy of a string.
void revstrcpy(char *rstr, const char *orgstr)

rstr += strlen(orgstr);
*rstr-- = '\0';

while (*orgstr) *rstr-- = *orgstr++;

}

This function is passed a pointer to the original string in orgstr and a pointer to a char array
that will receive the reversed string in rstr. Of course, the array pointed to by rstr must be
large enough to hold the reversed string plus the null terminator. Here is an example of how
revstrcpy() can be called:

char str[5] = "abcd";
char rev([5];

revstrcpy (rev, str);

After the call, rev will contain the characters dcba and str will be unaltered.

”~

Ignore Case Differences When Comparing Null-Terminated Strings

I Key Ingredients

Headers Classes Functions

<cctype> int tolower(int ch)

The standard stremp() function is case-sensitive. Therefore, the two strings "test" and "Test"
compare as different. Although a case-sensitive comparison is often what is needed, there are
times when a case-insensitive approach is required. For example, if you are alphabetizing a
list of entries for the index of a book, some of those entries might be proper nouns, such as
the name of a person. Despite the case differences, you want the alphabetical order to be
preserved. For example, you want "Stroustrup” to come after "class". The trouble is that the
lowercase letters are represented by values that are 32 greater than the uppercase letters.
Therefore, performing a case-sensitive comparison on "Stroustrup” and "class" yields a result
that puts "class" after "Stroustrup". To solve this problem, you must use a comparison
function that ignores case differences. This recipe shows one way to do this.

Step-by-Step

One way to ignore case differences when comparing null-terminated strings is to create
your own version of the stremp() function. This is quite easy to do, as this recipe shows.
The key is to convert each set of characters to the same case and then compare the two. This

28 Herb Schildt's C++ Programming Cookbook

recipe converts each character to lowercase using the standard function tolower(), but the
conversion to uppercase would work just as well.

1. Create a function called strcmp_ign_case() that has this prototype:
int strcmp_ign case(const char *strl, const char *str2);

2. Inside stremp_ign_case(), compare each corresponding character in the two strings.
To do this, set up a loop that iterates as long as the null terminator of one of the
strings has not been reached.

3. Inside the loop, first convert each character to lowercase by calling tolower(). Then
compare the two characters. Continue comparing characters until the end of one of
the strings is reached or the two characters differ. Notice that tolower() requires the
header <cctype>.

4. When the loop stops, return the result of subtracting the last character compared
from the second string from the last character compared from the first string. This
causes the function to return less than zero if str1 is less than str2, zero if the two are
equal (in this case, the terminating null of str2 is subtracted from the terminating
null of str1), or greater than zero if strl is greater than str2.

Discussion

The standard function tolower() was originally defined by C and is supported by C++ in a
couple of different ways. The version used here is declared within the header <cctype>. It
converts uppercase to lowercase based on the character set defined by the current locale. It
is shown here:

int tolower(int ch)

It returns the lowercase equivalent of ch, which must be an 8-bit value. Non-alphabetical
characters are returned unchanged.

To compare two null-terminated strings independently of case differences, you must
compare corresponding characters in the strings after normalizing them to a common case.
In this recipe, the characters are converted to lowercase. Here is an example of a loop that
compares characters in two strings but ignores case differences:

while (*strl && *str2) ({
if (tolower (*strl) != tolower(*str2))
break;

++strl;
++str2;

}

Notice that the loop will stop when the end of either string is reached or when a mismatch
is encountered.

When the loop ends, you must return a value that indicates the outcome of the comparison.
This is easy to do. Simply return the result of subtracting the last character pointed to by str2
from the last character pointed to by str1, as shown here:

return tolower (*strl) - tolower (*str2);

Chapter 2: String Handling

This returns zero if the null terminator of both strings has been encountered, indicating
equality. Otherwise, if the character pointed to by strl is less than the one pointed to by str2,
a negative value is returned, indicating that the first string is less than the second. If the
character pointed to by strl is greater than the character pointed to by str2, a positive value
is returned, indicating that the first string is greater than the second. Thus, it produces the
same outcome as stremp(), but in a case-insensitive manner.

Example

Putting it all together, here is one way to implement a case-insensitive string comparison
function called stremp_ign_case():

// A simple string comparison function that ignores case differences.
int strcmp ign case(const char *strl, const char *str2) ({

while (*strl && *str2)

if (tolower (*strl) != tolower (*str2))
break;
++strl;
++8tr2;
1
return tolower (*strl) - tolower (*str2);

}
The following program puts the string_ign_case() function into action:
// Ignore case differences when comparing strings.
#include <iostreams>
#include <cctypes>

using namespace std;

int strcmp_ign case(const char *strl, const char *str2);
void showresult (const char *strl, const char *str2, int result);

int main() {
char strA[]l= "tesT";
char strB[] = "Test";
char strC[] = "testing";
char strD[] = "Tea";

int result;

cout << "Here are the strings: " << endl;
cout << "strA: " << strA << endl;
cout << "strB: " << strB << endl;
cout << "strC: " << strC << endl;

cout << "strD: " << strD << "\n\n";

29

30

Herb Schildt's C++ Programming Cookbook

// Compare strings ignoring case.
result = strcmp_ign case(strA, strB);
showresult (strA, strB, result);

result = strcmp_ign case(strA, strC);
showresult (strA, strC, result);

result = strcmp_ign case(strA, strD);
showresult (strA, strD, result);

result = strcmp_ign case(strD, strA);
showresult (strD, strA, result);

return O;

}

// A simple string comparison function that ignores case differences.
int strcmp_ign case (const char *strl, const char *str2) {

while (*strl && *str2)

if (tolower (*strl) != tolower (*str2))
break;
++strl;
++str2;
return tolower (*strl) - tolower (*str2);

}

void showresult (const char *strl, const char *str2, int result) {
cout << strl << " is ";

if (!result)

cout << "equal to ";
else if (result < 0)

cout << "less than ";
else

cout << "greater than ";

cout << str2 << endl;

}
The output is shown here:

Here are the strings:
strA: tesT

strB: Test

strC: testing

strD: Tea

tesT is equal to Test
tesT is less than testing
tesT is greater than Tea
Tea is less than tesT

Chapter 2: String Handling

Options and Alternatives

As explained, the version of tolower() declared in <cctype> converts characters based on
the current locale. Frankly, this is often what you want, so it makes a good (and convenient)
choice in most cases. However, tolower() is also declared within <locale>, which declares
the members of C++'s localization library. (Localization aids in the creation of code that can
be easily internationalized.) Here is this version of tolower():

template <class charT> charT tolower(charT ch, const locale &loc)

This version of tolower() makes it possible to specify a different locale when converting the
case of a letter. For example:

char ch;

// ...
locale loc ("French") ;
cout << tolower (ch, 1loc);

This call to tolower() uses the locale information compatible with French.

Although there is no advantage to doing so, it is also possible to convert each character
in the string to uppercase (rather than lowercase) to eliminate case differences. This is done
via the toupper() function, shown here:

int toupper(int ch)

It works just like tolower(), except that it converts characters to uppercase.

”~

' Create a Search-and-Replace Function for Null-Terminated Strings

I Key Ingredients
Headers Classes Functions
<ccstring> char *strncpy(char *target, const char *source,
int count)
void *memmove(void *target, const void *source,
size_t count)

When working with strings, it is not uncommon to need to substitute one substring for
another. This operation involves two steps. First, you must find the substring to replace, and
second, you must replace it with the new substring. This process is commonly referred to as
"search and replace." This recipe shows one way to accomplish this for null-terminated
strings.

There are various ways to implement a "search-and-replace” function. This recipe uses
an approach in which the replacement takes place on the original string, thus modifying it.
Two other approaches are described in the Options and Alternatives section for this recipe.

32

Herb Schildt's C++ Programming Cookbook

Step-by-Step

One way to implement a "search-and-replace" function for a null-terminated string involves
the following steps. It creates a function called search_and_replace() that replaces the first
occurrence of one substring with another.

1. Create a function called search_and_replace() that has this prototype:

bool search_and replace (char *orgstr, int maxlen,

const char *oldsubstr, const char *newsubstr) ;
A pointer to the original string is passed via orgstr. The maximum number of
characters that orgstr can hold is passed in maxlen. A pointer to the substring to
search for is passed through oldsubstr, and a pointer to the replacement is passed
in newsubstr. The function will return true if a substitution has been made. That is,
it returns true if the string originally contained at least one occurrence of oldsubstr.
It returns false if no substitution takes place.

2. Search for a substring by calling strstr(). It returns a pointer to the beginning of the
first matching substring or a null pointer if no match is found.

3. If the substring is found, shift the remaining characters in the string as needed to
create a "hole" in the string that is exactly the size of the replacement substring. This
can be most easily done by calling memmove().

4. Using strncpy(), copy the replacement substring into the "hole" in the original
string.

5. Return true if a substitution was made and false if the original string is unchanged.

Discussion
To find a substring within a string, use the strstr() function, shown here:

char *strstr(const char *str1, const char *str2)

It returns a pointer to the start of the first occurrence of the string pointed to by str2 in the
string pointed to by str1. If no match is found, a null pointer is returned.

Conceptually, when one substring is replaced by another, the old substring must be
removed and its replacement inserted. In practice, there is no need to actually remove the
old substring. Instead, you can simply overwrite the old substring with the new one.
However, you must prevent the remaining characters in the string from being overwritten
when the new substring is longer than the old substring. You must also ensure that there is
no gap when the new substring is shorter than the old substring. Therefore, unless the new
substring is the same size as the old one, you will need to move the remaining characters in
the original string up or down so that you create a "hole" in the original string that is the
same size as the new substring. An easy way to accomplish this is to use memmove(),
shown here:

void *memmove(void *target, const void *source, size_t count)

It copies count characters from the array pointed to by source into the array pointed to by
target. It returns target. The copy takes place correctly even if the arrays overlap. This means
that it can be used to move characters up or down in the same array.

Chapter 2: String Handling

After you have created the properly sized "hole" in the string, you can copy the new
substring into the hole by calling strncpy(), shown here:

char *strncpy(char *target, const char *source, size_t count)

This function copies not more than count characters from source to target. If the string pointed
to by source contains less than count characters, null characters will be appended to the end of
target until count characters have been copied. However, if the string pointed to by source is
longer than count characters, the resultant string will not be null-terminated. It returns target.
If the two strings overlap, the behavior of strncpy() is undefined.

Have search_and_replace() return true when a substitution takes place and false if the
substring is not found or if the modified string exceeds the maximum permissible length of
the resulting string.

Example

Here is one way to implement the search_and_replace() function. It replaces the first
occurrence of oldsubstr with newsubstr.

// Replace the first occurrence of oldsubstr with newsubstr
// in the string pointed to by str. This means that the string
// pointed to by str is modified by this function.
//
// The maximum size of the resulting string is passed in maxlen.
// This value must be less than the size of the array that holds
// str in order to prevent an array overrun.
//
// It returns true if a replacement was made and false otherwise.
bool search _and replace(char *str, int maxlen,

const char *oldsubstr, const char *newsubstr) {

// Don't allow the null terminator to be substituted.
if (!*oldsubstr) return false;

// Next, check that the resulting string has a length

// less than or equal to the maximum number of characters allowed
// as specified by maxlen. If the maximum is exceeded, the

// function ends by returning false.

int len = strlen(str) - strlen(oldsubstr) + strlen(newsubstr);

if (len > maxlen) return false;

// See if the specified substring is in the string.
char *p = strstr(str, oldsubstr);

// If the substring is found, replace it with the new one.
if (p) {

// First, use memmove () to move the remainder of the

// string so that the new substring can replace the old one.

// In other words, this step either increases or decreases

// the size of the "hole" that the new substring will £ill.

memmove (p+strlen (newsubstr), p+strlen(oldsubstr),
strlen(p)-strlen(oldsubstr)+1) ;

3

34 Herb Schildt's C++ Programming Cookbook

// Now, copy substring into str.
strncpy (p, newsubstr, strlen(newsubstr)) ;

return true;

}

// Return false if no replacement was made.
return false;

}

Notice that the function will not put more than maxlen characters into str. The maxlen
parameter is used to prevent array overruns. You must pass it a value that is, at most, one
less than the size of the array pointed to by str. It must be one less than the size of the array
because you must allow room for the null terminator.

The following program shows the search_and_replace() function in action:

// Implement "search and replace" for null-terminated strings.
#include <iostream>
#include <cstrings

using namespace std;

bool search and replace(char *orgstr, int maxlen,
const char *oldsubstr, const char *newsubstr) ;

int main()
char str[80] = "alpha beta gamma alpha beta gamma";
cout << "Original string: " << str << "\n\n";
cout << "First, replace all instances of alpha with epsilon.\n";
// Replace all occurrences of alpha with epsilon.
while (search and replace(str, 79, "alpha", "epsilon"))
cout << "After a replacement: " << str << endl;
cout << "\nNext, replace all instances of gamma with zeta.\n";
// Replace all occurrences of gamma with zeta.
while (search and replace(str, 79, "gamma", "zeta"))
cout << "After a replacement: " << str << endl;
cout << "\nFinally, remove all occurrences of beta.\n";
// Replace all occurrences of beta with a null string.
// This has the effect of removing beta from the string.
while (search and replace(str, 79, "beta", ""))

cout << "After a replacement: " << str << endl;

return 0;

Chapter 2: String Handling

// Replace the first occurrence of oldsubstr with newsubstr
// in the string pointed to by str. This means that the string
// pointed to by str is modified by this function.
!/
// The maximum size of the resulting string is passed in maxlen.
// This value must be less than the size of the array that holds
// str in order to prevent an array overrun.
//
// It returns true if a replacement was made and false otherwise.
bool search and replace(char *str, int maxlen,
const char *oldsubstr, const char *newsubstr) {

// Don't allow the null terminator to be substituted.
if (! *oldsubstr) return false;

// Next, check that the resulting string has a length

// less than or equal to the maximum number of characters allowed
// as specified by maxlen. If the maximum is exceeded, the

// function ends by returning false.

int len = strlen(str) - strlen(oldsubstr) + strlen(newsubstr) ;

if (len > maxlen) return false;

// See if the specified substring is in the string.
char *p = strstr(str, oldsubstr);

// If the substring is found, replace it with the new one.
if (p) |

// First, use memmove () to move the remainder of the

// string so that the new substring can replace the old one.

// In other words, this step either increases or decreases

// the size of the "hole" that the new substring will £ill.

memmove (p+strlen (newsubstr), p+strlen(oldsubstr),
strlen(p)-strlen(oldsubstr)+1) ;

// Now, copy substring into str.
strncpy (p, newsubstr, strlen (newsubstr));

return true;

}

// Return false if no replacement was made.
return false;

}

The output is shown here:

Original string: alpha beta gamma alpha beta gamma
First, replace all instances of alpha with epsilon.

After a replacement: epsilon beta gamma alpha beta gamma
After a replacement: epsilon beta gamma epsilon beta gamma

35

Herb Schildt's C++ Programming Cookbook

Next, replace all instances of gamma with zeta.
After a replacement: epsilon beta zeta epsilon beta gamma
After a replacement: epsilon beta zeta epsilon beta zeta

Finally, remove all occurrences of beta.
After a replacement: epsilon zeta epsilon beta zeta
After a replacement: epsilon zeta epsilon =zeta

Options and Alternatives

As it is written, the search_and_replace() function substitutes a substring within the original
string. This means that the original string is modified. However, it is possible to take a different
approach in which the original string is left unchanged and the substituted string is returned in
another array. One way to do this is to pass a pointer to a string into which the result is copied.
This technique leaves the original string unchanged. This alternative is shown here:

// This replaces the first occurrence of oldsubstr with newsubstr.

// The resulting string is copied into the string passed in

// resultstr. This means that the original string is unchanged.

// The result string must be large enough to hold the

// string that results after replacing oldsubstr with newsubstr.

// The maximum number of characters to copy into resultstr

// is passed in maxlen. It returns true if a replacement was made

// and false otherwise.

bool search _and replace copy(const char *orgstr, char *resultstr, int maxlen,
const char *oldsubstr, const char *newsubstr) {

// Don't allow the null terminator to be substituted.
if (!*oldsubstr) return false;

// Next, check that the resulting string has a length

// less than the maximum number of characters allowed

// as specified by maxlen. If the maximum is exceeded,

// the function ends by returning false.

int len = strlen(orgstr) - strlen(oldsubstr) + strlen(newsubstr);
if (len > maxlen) return false;

// See if the specified substring is in the string.
const char *p = strstr(orgstr, oldsubstr);

// If the substring is found, replace it with the new one.
if (p) {

// Copy first part of original string.
strncpy (resultstr, orgstr, p-orgstr);

// Null-terminate the first part of resultstr so that it
// can be operated on by the other string functions.
* (resultstr + (p-orgstr)) = '\0';

Chapter 2: String Handling

// Substitute the new substring.
strcat (resultstr, newsubstr);

// Add the remainder of the original string,
// skipping over the old substring that was replaced.
strcat (resultstr, p+strlen(oldsubstr));

return true;

}

// Return false if no replacement was made.
return false;

}

The comments give a "play-by-play" description of how search_and_replace_copy() works.
Here is a synopsis. The function begins by finding the first occurrence in orgstr of the
substring passed in oldsubstring. It then copies the original string (orgstr) into the result
string (resultstr) up to the point at which the substring was found. Next, it copies the
replacement substring into resultstr. Finally, it copies the remainder of orgstr into resultstr.
Thus, on return, resultstr contains a copy of orgstr, with the only difference being the
substitution of newsubstr for oldsubstr. To prevent array overruns, search_and_replace_copy()
will copy only up to maxlen characters into resultstr. Therefore, the array pointed to by
resultstr must be at least maxlen+1 characters long. The extra character leaves room for the
null terminator.

Another alternative that is useful in some cases is to have the search_and_replace()
function dynamically allocate a new string that holds the resulting string and return a
pointer to it. This approach offers one big advantage: You don't need to worry about array
boundaries being overrun because you can allocate a properly sized array. This means that
you don't need to know the size of the resulting string in advance. The main disadvantage
is that you must remember to delete the dynamically allocated string when it is no longer
needed. Here is one way to implement such an approach:

// Replace the first occurrence of oldsubstr with newsubstr

// in str. Return a pointer to a new string that contains

// the result. The string pointed to by str is unchanged.

// Memory for the new string is dynamically allocated and must be

// released when it is no longer needed. If no substitution is made,

// a null pointer is returned. This function throws bad alloc if

// a memory allocation failure occurs.

char *search and replace alloc(const char *str, const char *oldsubstr,
const char *newsubstr) throw(bad alloc) ({

// Don't allow the null terminator to be substituted.
if (!*oldsubstr) return O;

// Allocate an array that is large enough to hold the resulting string.
int size = strlen(str) + strlen(newsubstr) - strlen(oldsubstr) + 1;
char *result = new char[size];

3

38 Herb Schildt's C++ Programming Cookbook

const char *p = strstr(str, oldsubstr);
if (p) |

// Copy first part of original string.
strncpy (result, str, p-str);

// Null-terminate the first part of result so that
// it can be operated on by other string functions.
* (result+ (p-str)) = '\0';

// Substitute the new substring.
strcat (result, newsubstr) ;

// Add the remainder of the original string.
strcat (result, p+strlen(oldsubstr)) ;

} else {
delete [] result; // release the unused memory
return O;

}

return result;

}

Notice that search_and_replace_alloc() throws bad_alloc if the allocation of the temporary
array fails. Remember, memory is finite and it is possible to run out. This is especially true for
embedded systems. Therefore, the caller of this version may need to handle this exception. For
example, here is the basic framework that you can use to call search_and_replace_alloc():

char *ptr;
try {

ptr = search and replace alloc(str, old, new)
} catch(bad_alloc exc) {

// Take appropriate action here.

}

if (ptr) {
// Use the string...

// Delete the memory when no longer needed.
delete [] ptr;

'

Chapter 2: String Handling

Categorize Characters Within a Null-Terminated String

Key Ingredients

Headers Classes Functions

<cctype> int isalnum(int ch)

int isalpha(int ch)
int iscntrl(int ch)

int isdigit(int ch)

int isgraph(int ch)
int islower(int ch)
int isprint(int ch)

int ispunct(int ch)
int isspace(int ch)
int isupper(int ch)
int isxdigit(int ch)

Sometimes you will want to know what sorts of characters a string contains. For example,
you might want to remove all whitespace (spaces, tabs, and newlines) from a file or display
non-printing characters using some type of visual representation. To perform these tasks
implies that you can categorize characters into different types, such as alphabetical, control,
digits, punctuation, and so on. Fortunately, C++ makes it very easy to accomplish this by
using one or more standard functions that determine a character's category.

Step-by-Step

The character functions make it quite easy to categorize a character. It involves these steps:

1.

O 0 NI O U1 = LW DN

_ e =
N = O

All of the character categorization functions are declared in <cctype>. Therefore, it
must be included in your program.

. To determine if a character is a letter or digit, call isalnum().

. To determine if a character is a letter, call isalpha().

. To determine if a character is a control character, call iscntrl().

. To determine if a character is a digit, call isdigit().

. To determine if a character is visible (excluding the space), call isgraph().

. To determine if a character is a lowercase letter, call islower().

. To determine if a character is printable (including the space), call isprint().
. To determine if a character is punctuation, call ispunct().

. To determine if a character is whitespace, call isspace().

. To determine if a character is an uppercase letter, call isupper().

. To determine if a character is a hexadecimal digit, call isxdigit().

39

40

Herb Schildt's C++ Programming Cookbook

Discussion

The character categorization functions were originally defined by C and are supported by
C++ in a couple of different ways. The versions used here are declared within the header
<cctype>. They all categorize characters based on the current locale.

All of the is... functions work in essentially the same way. Each is briefly described here:

int isalnum(int ch)

Returns non-zero

if ch is either a letter or a digit, and zero otherwise.

int isalpha(int ch)

Returns non-zero

if ch is a letter and zero otherwise.

int iscntrl(int ch)

Returns non-zero

if ch is a control character and zero otherwise.

int isdigit(int ch)

Returns non-zero

if ch is a digit and zero otherwise.

int isgraph(int ch)

Returns non-zero
zero otherwise.

if ch is a printable character other than a space and

int islower(int ch)

Returns non-zero

if ch is a lowercase letter and zero otherwise.

int isprint(int ch)

Returns non-zero
otherwise.

if ch is printable (including a space) and zero

int ispunct(int ch)

Returns non-zero

if ch is punctuation and zero otherwise.

int isspace(int ch) Returns non-zero if ch is whitespace (including spaces, tabs,

newlines) and zero otherwise.

int isupper(int ch) Returns non-zero if ch is an uppercase letter and zero otherwise.

int isxdigit(int ch) Returns non-zero if ch is a hexadecimal digit (0-9, A-F, or a-f) and zero

otherwise.

Most of the functions are self-explanatory. However, notice the ispunct() function. It returns
true for any character that is punctuation. This is defined as any character that is not a letter,
a digit, or a space. Therefore, operators such as + and / are categorized as punctuation.

Example

The following example shows the isalphal(), isdigit(), isspace(), and ispunct() functions in
action. They are used to count the number of letters, spaces, and punctuation contained
within a string.

// Count spaces, punctuation, digits, and letters.

#include <iostream>

#include <cctypes>

using namespace std;

int main() {
const char *str = "I have 30 apples and 12 pears. Do you have any?";
int letters = 0, spaces = 0, punct = 0, digits = 0;

cout << str << endl;

Chapter 2: String Handling

while (*str)
if (isalpha(*str)) ++letters;
else if (isspace(*str)) ++spaces;
else if (ispunct (*str)) ++punct;
else if (isdigit(*str)) ++digits;

++str;
cout << "Letters: " << letters << endl;
cout << "Digits: " << digits << endl;
cout << "Spaces: " << gpaces << endl;
cout << "Punctuation: " << punct << endl;
return 0;

}
The output is shown here:

I have 30 apples and 12 pears. Do you have any?
Letters: 31

Digits: 4

Spaces: 10

Punctuation: 2

Bonus Example: Word Count

There is one well-known application in which the character categorization functions are
used: a word-count utility. As a result, a word-count program makes the quintessential
example for functions such as isalpha() and ispunct(). The following example creates a
very simple version of the word-count utility. The actual counting is handled by the
wordcount() function. It is passed a pointer to a string. It then counts the words, lines,
spaces, and punctuation in the string and returns the result.

This version of wordcount() uses a fairly simple strategy: It counts only whole words
that consist solely of letters. This means that a hyphenated word counts as two separate
words. As a result, the sequence "null-terminated” counts as two words. Furthermore, a
word must not contain any digits. For example, the sequence "testing123testing” will count
as two words. The wordcount() function does, however, allow one non-letter character to
be in a word: the apostrophe. This allows it to support possessives (such as Tom's) and
contractions (such as it's). Each is counted as one word.

// Count words, lines, spaces, and punctuation.
#include <iostreams>
#include <cctype>

using namespace std;

// A structure to hold the word-count statistics.
struct we {

int words;

int spaces;

Q

2

Herb Schildt's C++ Programming Cookbook

int punct;
int lines;

we () |

words = punct = spaces = lines = 0;

wc wordcount (const char *str);

int main() {
const char *test = "By supplying a string class and also "
"supporting null-terminated strings, \nC++ "
"offers a rich programming environment for "
"string-intensive tasks.\nIt's power programming.";
cout << "Given: " << "\n\n";

cout << test << endl;
wc wed = wordcount (test) ;

cout << "\nWords: " << wcd.words << endl;
cout << "Spaces: " << wcd.spaces << endl;
cout << "Lines: " << wcd.lines << endl;

cout << "Punctuation: " << wcd.punct << endl;
return 0;

}

// A very simple "word count" function.
// It counts the words, lines, spaces, and punctuation in
// a string and returns the result in a wc structure.
wc wordcount (const char *str)
wc data;

// If the string is not null, then it contains at least one line.

if (*str) ++data.lines;
while (*str) {

// Check for a word.

if (isalpha(*str)) {
// Start of word found. Now, look for the end of the word.
// Allow apostrophes in words, as in "it's."

while (isalpha (*str) || *str == '\'') {
if (*str == '\'') ++data.punct;
++str;

}

data.words++;

}

else {

// Count punctuation, spaces (including newlines), and lines.

Chapter 2: String Handling

if (ispunct (*str)) ++data.punct;

else if (isspace(*str)) {
++data.spaces;
// If there is any character after the newline, increment
// the line counter.
if (*str == '\n' && *(str+l)) ++data.lines;

1

++str;

}
1

return data;

}

The output is shown here:

Given:

By supplying a string class and also supporting null-terminated strings,

C++ offers a rich programming environment for string-intensive tasks.
It's power programming.

Words: 24
Spaces: 21
Lines: 3

Punctuation: 8

There are a couple of points of interest in this program. First, notice that the wordcount()
function returns the results in an object of type wc, which is a struct. I used a struct rather
than a class because wc is, essentially, a data-only object. Although wc does contain a
default constructor (which performs a simple initialization), it defines no member functions
or parameterized constructors. Thus, I felt that struct better fit its purpose (which is to hold
data) than did class. In general, I like to use class when there are member functions. I like to
use struct for objects that simply house data. Of course, in C++, both create a class type and
there is no hard and fast rule in this regard.

Second, the line count is incremented when a newline character is found only if that
newline is not immediately followed by the terminating null. This check is handled by
this line:

if (*str == '\n' && *(str+l)) ++data.lines;

Basically, this ensures that the number of lines of text that one would see is equal to the line
count returned by the function. This prevents a completely empty final line from being
counted as a line. Of course, the line may still appear blank if all it contains is spaces.

Options and Alternatives

As mentioned, the character categorization functions defined in <cctype> operate relative to
the default locale. Additional versions of these functions are also supported by <locale>
and they allow you to specify a locale.

43

44

'

Tokenize a Null-Terminated String

Herb Schildt's C++ Programming Cookbook

Key Ingredients

Headers Classes Functions

<cstring> char *strtok(char *str,
const char *delimiters);

Tokenizing a string is one programming task that just about every programmer will face at
one time or another. Tokenizing is the process of reducing a string into its individual parts,
which are called tokens. Thus, a token represents the smallest indivisible element that can be
meaningfully extracted from a string.

Of course, what constitutes a token depends on what type of input is being processed
and for what purpose For example, if you want to obtain the words in a sentence, then a
token is a set of characters surrounded by either whitespace or punctuation. For example,
given the sentence:

I'like apples, pears, and grapes.

The individual tokens are

| like apples

pears and grapes

Each token is delimited by the whitespace and/or punctuation that separates one from
another. When tokenizing a string that contains a list of key/value pairs organized like this:

key=value, key=value, key=value, ...

The tokens are the key and the value. The = sign and the comma are separators that delimit
the tokens. For example, given

price=10.15, quantity=4

The tokens are

price 10.15 quantity 4

The point is that what constitutes a token will change, depending on the circumstance.
However, the general process of tokenizing a string is the same in all cases.

Because tokenizing a string is both an important and common task, C++ provides
built-in support for it through the strtok() function. This recipe shows how to use it.

Chapter 2: String Handling

Step-by-Step

To use strtok() to tokenize a string involves these steps:

1. Create a string that contains the characters that separate one token from another.
These are the token delimiters.

2. To obtain the first token in the string, call strtok() with a pointer to the string to be
tokenized and a pointer to the string that contains the delimiters.

3. To obtain the remaining tokens in the string, continue calling strtok(). However,
pass a null pointer for the first argument. You can change the delimiters as needed.

4. When strtok() returns null, the string has been fully tokenized.

Discussion
The strtok() function has the following prototype:

char *strtok(char *str, const char *delimiters)

A pointer to the string from which one or more tokens will be obtained is passed in str. A
pointer to the string that contains the characters that delimit a token is passed in delimiters.
Thus, delimiters contains the characters that divide one token from another. A null pointer is
returned if there are no more tokens in str. Otherwise, a pointer to a string that contains the
next token is returned.

Tokenizing a string is a two-step process. The first call to strtok() passes a pointer to the
string to be tokenized. Each subsequent call to strtok() passes a null pointer to str. This
causes strtok() to continue tokenizing the string from the point at which the previous token
was found. When no more tokens are found, a null pointer is returned.

One useful aspect of strtok() is that you can change the delimiters as needed during the

tokenization process. For example, consider a string that contains key/value pairs organized
like this

count = 10, max = 99, min = 12, name = "Tom Jones, jr.", ...

To read most of the keys and values in this string, the following delimiter set can be used:

However, to read a quoted string that can consist of any character, including commas, this
delimiter is needed:

" \ "
Because strtok() lets you change delimiter sets "on the fly," you can specify which delimiters

are needed at any point in time. This technique is illustrated by the following example.

Example

The following example shows how to use strtok() to tokenize a null-terminated string:

// Demonstrate strtok() .
#include <iostream>
#include <cstrings>

using namespace std;

46 Herb Schildt's C++ Programming Cookbook

int main() {
// First, use strtok() to tokenize a sentence.

// Create a string of delimiters for simple sentences.
char delims[] = "., ?2;!";

char str[] = "I like apples, pears, and grapes. Do you?";
char *tok;
cout << "Obtain the words in a sentence.\n";

// Pass the string to be tokenized and get the first token.
tok = strtok(str, delims) ;

// Get all remaining tokens.
while (tok) {
cout << tok << endl;

// Each subsequent call to strtok() is passed NULL
// for the first argument.
tok = strtok(NULL, delims) ;

}

// Now, use strtok() to extract keys and values stored
// in key/value pairs within a string.
char kvpairs[] = "count=10, name=\"Tom Jones, jr.\", max=100, min=0.01";

// Create a list of delimiters for key/value pairs.
char kvdelims[] = " =,";

cout << "\nTokenize key/value pairs.\n";

// Get the first key.
tok = strtok(kvpairs, kvdelims) ;

// Get all remaining tokens.
while (tok)
cout << "Key: " << tok << " ";

// Get a value.

// First, if the key is name, the value will be
// a quoted string.
if (!strcmp ("name", tok)) {
// Notice that this call uses only quotes as a delimiter.
// This lets it read a quoted string that contains any character.
tok = strtok (NULL, "\"");
}
else {
// Otherwise, read a simple value.
tok = strtok(NULL, kvdelims) ;

Chapter 2: String Handling

}

cout << "Value: " << tok << endl;

// Get the next key.
tok = strtok (NULL, kvdelims) ;

}

return 0;

}
The output is shown here:

Obtain the words in a sentence.
I

like

apples

pears

and

grapes

Do

you

Tokenize key/value pairs.

Key: count Value: 10

Key: name Value: Tom Jones, Jjr.
Key: max Value: 100

Key: min Value: 0.01

Pay special attention to the way that key/value pairs are read. The delimiters used to read
a simple value differ from the delimiters used to read a quoted string. Furthermore, the
delimiters are changed during the tokenization process. As explained, when tokenizing a
string, you can change the delimiter set as needed.

Options and Alternatives

Although strtok() is simple to use, and quite effective when applied in situations for which
it is well suited, its use is inherently limited. The main trouble is that strtok() tokenizes a
string based on a set of delimiters, and once a delimiter has been encountered, it is lost. This
makes it difficult to use strtok() to tokenize a string in which the delimiters might also be
tokens. For example, consider the following simple C++ statement:

X = count+12;

To parse this statement, the + must be handled as both a delimiter that terminates count and
as a token that indicates addition. The trouble is that there is no easy way to do this using
strtok(). To obtain count, the + must be in the set of delimiters. However, once the + has
been encountered, it is consumed. Thus, it cannot also be read as a token. A second problem
with strtok() is that errors in the format of the string being tokenized are difficult to detect—
at least until the end of the string is prematurely reached.

Because of the problems with applying strtok() to a wide range of cases, other approaches
to tokenization are often used. One such approach is to write your own "get token" function.
This gives you full control over the tokenization process and lets you easily return tokens

LY

48

Herb Schildt's C++ Programming Cookbook

based on context rather than delimiters. A simple example of such an approach is shown here.
The custom get token function is called gettoken(). It tokenizes a string into the following
token types:

¢ Alphanumeric strings, such as count, indx27, or OverFlow.

¢ Unsigned integer numbers, such as 2, 99, or 0.

® Punctuation, which includes operators, such as + and /.

Thus, gettoken() can be used to tokenize very simple expressions, such as
X = count+12;

or
while(x<9) x = x — w;

The gettoken() function is used much like strtok(). On the first call, pass a pointer to
the string to be tokenized. On subsequent calls, pass a null pointer. It returns a pointer to
the next token in the string. It returns a null pointer when there are no more tokens. To
tokenize a new string, simply start the process over by passing a pointer to the new string.
The simple gettoken() function, along with a main() function to demonstrate its use, is
shown here:

// Demonstrate a custom gettoken() function that can

// return the tokens that comprise very simple expressions.
#include <iostream>

#include <cstring>

#include <cctypes>

using namespace std;

const char *gettoken(const char *str);

int main() {
char sampleA[] = "max=12+3/89; count27 = 19* (min+floor);";
char sampleB[] = "while(i < max) i = counter * 2;";

const char *tok;

// Tokenize the first string.
tok = gettoken (sampled) ;
cout << "Here are the tokens in: " << sampleA << endl;
while (tok)
cout << tok << endl;
tok = gettoken (NULL) ;

}

cout << "\n\n";

// Restart gettoken() by passing the second string.
tok = gettoken (sampleB) ;
cout << "Here are the tokens in: " << sampleB << endl;
while (tok)

cout << tok << endl;

}

//
//
//
//
//
//
//
//
//
//

Chapter 2: String Handling

tok = gettoken (NULL) ;

}

return O;

A very simple custom gettoken() function. The tokens are comprised
of alphanumeric strings, numbers, and single-character punctuation.
Although this function is quite limited, it demonstrates the basic
framework that can be expanded and enhanced to obtain other types
of tokens.

On the first call, pass a pointer to the string to be tokenized.
On subsequent calls, pass a null pointer.

It returns a pointer to the current token, or a null

pointer if there are no more tokens.

#define MAX TOK SIZE 128
const char *gettoken (const char *str) {

static char token[MAX TOK SIZE+1];

static const char *ptr;

int count; // holds the current character count
char *tokptr;

if (str) |
ptr = str;

}

tokptr = token;
count = 0;

while (isspace (*ptr)) ptr++;

if (isalpha (*ptr))

while (isalpha (*ptr) || isdigit (*ptr)) ({
*tokptr++ = *ptr++;
++count;
if (count == MAX TOK SIZE) break;

}
} else if (isdigit (*ptr))
while (isdigit (*ptr))
*tokptr++ = *ptr++;
++count ;
if (count == MAX TOK SIZE) break;

} else if (ispunct (*ptr))
*tokptr++ = *ptr++;

} else return NULL;

// Null-terminate the token.
*tokptr = '\0';

return token;

49

50

Herb Schildt's C++ Programming Cookbook

The output from the program is shown here:

Here are the tokens in: max=12+3/89; count27 = 19* (min+floor) ;
max

12

Here are the tokens in: while(i < max) 1 = counter * 2;
while

counter
*

2

7

The operation of gettoken() is straightforward. It simply examines the next character in the
input string and then reads the type of token that starts with that type of character. For
example, if the token is a letter, then gettoken() reads an alphanumeric token. If the next
character is a digit, then gettoken() reads an integer. If the next character is punctuation,
then the token consists of that character. Notice that gettoken() does not let the length of a
token exceed the maximum token length as specified by MAX_TOK_SIZE. Also, notice that
gettoken() does not modify the input string. This differs from strtok(), which does modify
the input string. Finally, notice that the pointer returned by gettoken() is const. This means
that it can't be used to modify the static array token. Finally, although gettoken() is very
simple, it can be easily adapted and enhanced to fit other, more sophisticated situations.

Chapter 2: String Handling

”~

Perform Basic Operations on string Objects

I Key Ingredients
Headers Classes Functions
<string> string size_type capacity() const

string &erase(size_type indx = 0,
size_type len = npos)
string &insert(size_type indx,
const string &str)
size_type max_size() const
char &operator|](size_type indx)
string &operator=(const string &str)
void push_back (const char ch)
void reserve(size_type num = 0)
size_type size() const;
string substr(size_type indx = 0,
size_type len = npos) const

<string> string operator+(const string &leftop,
const string &rightop)

bool operator==(const string &leftop,
const string &rightop)

bool operator<=(const string &leftop,
const string &rightop)

bool operator>(const string &leftop,
const string &rightop)

As explained at the start of this chapter, C++ provides two ways of handling strings. The
first is the null-terminated string (also called a C-string). The null-terminated string was
inherited from C and is still widely used in C++ programming. It is also the type of string
used in the preceding recipes. The second type of string is an object of the template class
basic_string. This class is defined by C++ and is part of the standard C++ class library. The
remaining recipes in this chapter use basic_string.

Strings of type basic_string have several advantages over null-terminated strings. Here
are some of the most important:

* basic_string defines a data type. (Recall that a null-terminated string is simply
a convention.)

* Dbasic_string encapsulates the character sequence that forms the string, thus preventing
improper operations. When using basic_string, it is not possible to generate an array
overrun, for example.

a

B2 Herb Schildt's C++ Programming Cookbook

basic_string objects are dynamic. They grow as needed to accommodate the size of
the string that is being held. Therefore, it is not necessary to know in advance how
large a string is needed.

basic_string defines operators that manipulate strings. This streamlines many types
of string handling.

basic_string defines a complete set of member functions that simplify working with
strings. You seldom have to write your own function to perform some string
manipulation.

There are two built-in specializations of basic_string: string (which is for characters of
type char) and wstring (which is for wide characters). For convenience, all of the recipes in
this book use string, but most of the information is applicable to any type of basic_string.

This recipe demonstrates several of the basic operations that can be applied to objects of
type string. It shows how to construct a string. It then demonstrates several of its operators
and member functions. It also demonstrates how string objects adjust their size at runtime
to accommodate an increase in the size of the character sequence.

Step-by-Step

To perform the basic string operations involves these steps:

1.

N U1 B~ W

N

The string class is declared within the header <string>. Thus, <string> must be
included in any program that uses string.

. Create a string by using one of its constructors. Three are demonstrated in this

recipe. The first creates an empty string, the second creates a string initialized by
a string literal, and the third creates a string that is initialized by another string.

. To obtain the length of the longest possible string, call max_size().
. To assign one string to another, use the = operator.
. To concatenate two string objects, use the + operator.

. To lexicographically compare two string objects, use the relational operators, such

as > or ==.

. To obtain a reference to a character at a specified index, use the [] indexing operator.

8. To obtain the number of characters currently held by a string, call size().

9. To obtain the current capacity of a string, call capacity().

10.
11.
12.
13.

To specify a capacity, call reserve().
To remove all or part of the characters from a string, call erase().
To add a character to the end of a string, call push_back().

To obtain a substring, call substr().

Discussion
The string class defines several constructors. The ones used by this recipe are shown here:

explicit string(const Allocator &alloc = Allocator())
string(const char *str, const Allocator &alloc Allocator())

Chapter 2: String Handling

string(const string &str, size_type indx =0,
size_type len=npos, const Allocator &alloc Allocator())

The first constructor creates an empty string. The second creates a string that is initialized
by the null-terminated string pointed to by str. The third creates a string that is initialized by
a substring of str that begins at indx and runs for len characters. Although these look a bit
intimidating, they are easy to use. Generally, the allocator (which controls how memory is
allocated) is allowed to default. This means that normally you won't specify an allocator
when creating a string. For example, the following creates an empty string and a string
initialized with a string literal:

string mystr; // empty string
string mystr2("Hello"); // string initialized with the sequence Hello

In the third constructor, the defaults for both indx and len are typically used, which means
that the string contains a complete copy of str.

Although string objects are dynamic, growing as needed at runtime, there is still a
maximum length that a string can have. Although this maximum is typically quite large, it
may be useful to know it in some cases. To obtain the maximum string length, call max_size(),
shown here:

size_type max_size() const

It returns the length of the longest possible string.
You can assign one string to another by using the = operator. This operator is implemented
as a member function. It has several forms. Here is one used by this recipe:

string &operator=(const string &str)

It assigns the character sequence in str to the invoking string. It returns a reference to the
invoking object. Other versions of the assignment operator let you assign a null-terminated
string or a character to a string object.

You can concatenate one string with another by using the + operator. It is defined as a
non-member function. It has several forms. Here is the one used by this recipe:

string operator+(const string &leftop, const string &rightop)

It concatenates rightop to leftop and returns a string object that contains the result. Other
versions of the concatenation operator let you concatenate a string object with a null-
terminated string or with a character.

You can insert one string into another by using the insert() function. It has several
forms. The one used here is:

string &insert(size_type indx, const string &str)

It inserts str into the invoking string at the index specified by indx. It returns a reference to
the invoking object.

All of the relational operators are defined for the string class by non-member operator
functions. They perform lexicographical comparisons of the character sequences contained
within two strings. Each operator has several overloaded forms. The operators used here

3

o

Herb Schildt's C++ Programming Cookbook

are ==, <=, and >, but all of the relational operators work in the same basic way. Here are
the versions of these operators that are used in this recipe:

bool operator==(const string &leftop, const string &rightop)
bool operator<=(const string &leftop, const string &rightop)
bool operator>(const string &leftop, const string &rightop)

In all cases, leftop refers to the left operand and rightop refers to the right operand. The result
of the comparison is returned. Other versions of these operators let you compare a string
object with a null-terminated string.

You can obtain a reference to a specific element in a string by using the array indexing
operator []. It is implemented as a member function, as shown here:

char &operator|](size_type indx)

It returns a reference to the character at the zero-based index specified by indx. For example,
given a string object called mystr, the expression mystr[2] returns a reference to the third
character in mystr. A const version is also available.

The number of characters contained in the string can be obtained by calling size(),
shown here:

size_type size() const

It returns the number of characters currently in the string. As explained in the overview at
the start of this chapter, size_type is a typedef that represents some form of unsigned integer.
The number of characters that a string object can hold is not predetermined. Instead, a

string object will grow as needed to accommodate the size of the string that it needs to
encapsulate. However, all string objects begin with an initial capacity, which is the maximum
number of characters that can be held before more memory needs to be allocated. The capacity
of a string object can be determined by calling capacity(), shown here:

size_type capacity() const

It returns the current capacity of the invoking string.

The capacity of a string object can be important because memory allocations are costly
in terms of time. If you know in advance the number of characters that a string will hold,
then you can set the capacity to that amount, thereby eliminating a memory reallocation. To
do this, call reserve(), shown next:

void reserve(size_type num = 0)

It sets the capacity of the invoking string so that it is equal to at least num. If num is less than
or equal to the number of characters in the string, then the call to reserve() is a request to
reduce the capacity to equal the size. This request can be ignored, however.

You can remove one or more characters from a string by calling erase(). There are three
versions of erase(). The one used by this recipe is shown here:

string &erase(size_type indx = 0, size_type len = npos)

Beginning at indx, it removes len characters from the invoking object. It returns a reference
to the invoking object.

One of the more interesting string member functions is push_back(). It adds a character
to the end of the string;:

void push_back (const char ch)

Chapter 2: String Handling

It adds ch to the end of the invoking string. It is quite useful when you want to create a
queue of characters.
You can obtain a portion of a string (i.e., a substring) by calling substr(), shown here:

string substr(size_type indx = 0, size_type len = npos) const

It returns a substring of len characters, beginning at indx within the invoking string.

Example

The following example illustrates several of the fundamental string operations:

// Demonstrate the basic string operations.
#include <iostream>
#include <strings>

using namespace std;

int main ()

{
// Create some string objects. Three are initialized
// using the string literal passed as an argument.
string strl ("Alpha");
string str2 ("Beta");
string str3 ("Gamma") ;
string str4;

// Output a string via cout.
cout << "Here are the original strings:\n";

cout << " strl: " << strl << endl;
cout << " str2: " << str2 << endl;
cout << " str3: " << str3 << "\n\n";

// Display the maximum string length.
cout << "The maximum string length is: " << strl.max size()
<< "\n\n";

// Display the size of strl.
cout << "strl contains " << strl.size() << " characters.\n";

// Display the capacity of stril.
cout << "Capacity of strl: " << strl.capacity() << "\n\n";

// Display the characters in a string one at a time
// by using the indexing operator.
for (unsigned i = 0; i < strl.size(); ++i)
cout << "strl[i]l: " << strl[i] << endl;
cout << endl;

// Assign one string to another.
str4 = stril;
cout << "str4 after being assigned strl: " << str4 << "\n\n";

%

56

Herb Schildt's C++ Programming Cookbook

// Concatenate two strings.
str4d = strl + str3;

cout << "str4 after begin assigned stl+str3: " << str4 << "\n\n";

// Insert one string into another.
str4.insert (5, str2);
cout << "str4 after inserting str2: " << strd << "\n\n";

// Obtain a substring.

str4d = gtr4.substr (5, 4);

cout << "str4 after being assigned str4.substr(5, 3): "
<< str4 << "\n\n";

// Compare two strings.
cout << "Compare strings.\n";
if (str3 > strl) cout << "str3 > strli\n";
if (str3 == strl+str2)
cout << "str3 == strl+str2\n";
if (strl <= str2)
cout << "strl <= str2\n\n";

// Create a string object using another string object.
cout << "Initialize str5 with the contents of strl.\n";
string str5(strl);

cout << "str5: " << str5 << "\n\n";

// Erase str4.

cout << "Erasing str4.\n";

str4.erase() ;

if (strd.empty()) cout << "str4 is now empty.\n";

cout << "Size and capacity of str4 is " << str4.size() << " "
<< str4d.capacity() << "\n\n";

// Use push back() to add characters to str4.

for(char ch = 'A'; ch <= 'Z'; ++ch)

str4.push back(ch) ;
cout << "str4 after calls to push back(): " << str4 << endl;
cout << "Size and capacity of str4 is now " << strd.size() <<

<< str4.capacity() << "\n\n";

// Set the capacity of str4 to 128.
cout << "Setting the capacity of str4 to 128\n";
str4.reserve (128) ;

cout << "Capacity of str4 is now: " << strd.capacity() << "\n\n";

// Input a string via cin.

cout << "Enter a string: ";

cin >> stril;

cout << "You entered: " << strl << "\n\n";

return 0;

Chapter 2: String Handling

The output is shown here:

Here are the original strings:
strl: Alpha
str2: Beta
str3: Gamma

The maximum string length is: 4294967294

strl contains 5 characters.
Capacity of strl: 15

strl[i]l: A
strlif[il: 1
strl[il: p
strl[il: h
strl[i]l: a

str4 after being assigned strl: Alpha

str4 after being assigned stl+str3: AlphaGamma
str4 after inserting str2: AlphaBetaGamma

str4 after being assigned str4.substr(5, 3): Beta

Compare strings.
str3 > strl
strl <= str2

Initialize str5 with the contents of strl.
str5: Alpha

Erasing str4.
str4 is now empty.
Size and capacity of str4 is 0 15

str4 after calls to push back(): ABCDEFGHIJKLMNOPQRSTUVWXYZ
Size and capacity of str4 is now 26 31

Setting the capacity of str4 to 128
Capacity of str4 is now: 143

Enter a string: test
You entered: test

Perhaps the most important thing to notice in the example is that the size of the strings is
not specified. As explained, string objects are automatically sized to hold the string that they
are given. Thus, when assigning or concatenating strings, the target string will grow as
needed to accommodate the size of the new string. It is not possible to overrun the end of the
string. This dynamic aspect of string objects is one of the ways in which they are better than
standard null-terminated strings, which are subject to boundary overruns. (As mentioned in

o

38

Herb Schildt's C++ Programming Cookbook

the overview, an attempt to create a string that exceeds the longest possible string results in a
length_error being thrown. Thus, it is not possible to overrun a string.)

There is one other important thing to notice in the sample run. When the capacity of str4
is increased by calling reserve() with an argument of 128, the actual capacity becomes 143.
Remember, a call to reserve() causes the capacity to be increased to at least the specified
value. The implementation is free to set it to a higher value. This might happen because
allocations might be more efficient in blocks of a certain size, for example. (Of course,
because of differences between compilers, you might see a different capacity value when
you run the sample program. Such differences are to be expected.)

Options and Alternatives

Even for the basic string operations, string offers many alternatives. Several are
mentioned here.

As explained, to obtain the number of characters currently held by a string, you can call
size(). However, you can also call length(). It returns the same value and works the same
way. In essence, size() and length() are simply two different names for the same function.
The reason for the two names is historical. The size() method must be implemented by all
STL containers. Although not always thought of as part of the STL, string meets all of the
STL requirements for a container and is compatible with the STL. Part of those requirements
is that a container must provide a size() function. Therefore, size() became part of string.

The insert() function has several additional forms. For example, you can insert a portion
of one string into another, one or more characters into a string, or a null-terminated string
into a string.

The erase() function has two additional forms that let you remove characters referred to
by an iterator (see Operate on string Objects Through Iterators).

Although using the indexing operator [] is more straightforward, you can also obtain a
reference to a specific character by calling the at() method. It is shown here as it is
implemented for string:

char &at(size_type indx)

It returns a reference to the character at the zero-based index specified by indx. A const
version is also available.

As the recipe shows, you can perform simple assignments and concatenations using
the = and + operators defined for string. In cases in which more sophisticated assignments
or concatenations are needed, string supplies the assign() and append() functions. These
functions have many forms that allow you to assign or append portions of a string, all or
part of a null-terminated string, or one or more characters. There are also forms that support
iterators. Although there are far too many to describe in this recipe, here is an example
of each:

string &assign(const string &str, size_type indx, size_type len)
string &append(const string &str, size_type indx, size_type len)

This version of assign() assigns a substring of str to the invoking string. The substring
begins at indx and runs for len characters. This version of append() appends a substring of
str onto the end of the invoking string. The substring begins at indx and runs for len
characters. Both functions return a reference to the invoking object.

Chapter 2: String Handling

The relational operators are the easiest way to compare one string with another. In
addition to the forms used in the recipe, other versions of these operators let you compare a
string object with a null-terminated string. To provide added flexibility, string also supplies
the compare() function, which lets you compare portions of two strings. Here is one
example. It compares a string with a substring of the invoking string.

int compare(size_type indx, size_type len, const string &str) const

This function compares str to the substring within the invoking string that begins at indx
and is len characters long. It returns less than zero if the sequence in the invoking string is
less than str, zero if the two sequences are equal, and greater than zero if the sequence in the
invoking string is greater than str.

You can remove all characters from a string in two ways. First, as the recipe shows, you
can use the erase() function, allowing the arguments to default. Alternatively, you can call
clear(), which is shown here:

void clear()

”~
Search a string Object

I Key Ingredients
Headers Classes Functions
<string> string size_type find(const char *str,

size_type indx = 0) const
size_type find(const string &str,

size_type indx = 0) const
size_type find_first_of(const char *str,

size_type indx = 0) const
size_type find_first_of(const string &str,

size_type indx = 0) const
size_type find_first_not_of(const char *str,

size_type indx = 0) const
size_type find_last_of(const char *str,

size_type indx = npos) const
size_type find_last_not_of(const char *str,

size_type indx = npos) const
size_type rfind(const char *str,

size_type indx = npos) const

60 Herb Schildt's C++ Programming Cookbook

The string class defines a powerful assortment of functions that search a string. These
functions let you find:

¢ The first occurrence of a substring or character.

¢ The last occurrence of a substring or character.

¢ The first occurrence of any character in a set of characters.

¢ The last occurrence of any character in a set of characters.

¢ The first occurrence of any character that is not part of a set of characters.

* The last occurrence of any character that is not part of a set of characters.

This recipe demonstrates their use.

Step-by-Step

Searching a string involves these steps:

. To find the first occurrence of a sequence or character, call find().
. To find the last occurrence of a sequence or character, call rfind().
. To find the first occurrence of any character in a set of characters, call find_first_of().

. To find the last occurrence of any character in a set of characters, call find_last_of().

O = LW N =

. To find the first occurrence of any character that is not part of a set of characters, call
find_first_not_of().

6. To find the last occurrence of any character that is not part of a set of characters, call
find_last_not_of().

Discussion

All of the search functions have four forms, which allow you to specify the objective of
the search as a string, a null-terminated string, a portion of a null-terminated string, or a
character. The forms used by the examples in this recipe are described here.

The find() function finds the first occurrence of a substring or character within another
string. Here are the forms used in this recipe or by the Bonus Example:

size_type find(const string &str, size_type indx = 0) const
size_type find(const char *str, size_type indx = 0) const

Both return the index of the first occurrence of str within the invoking string. The indx
parameter specifies the index at which the search will begin within the invoking string. In
the first form, str is a reference to a string. In the second form, str is a pointer to a null-
terminated string. If no match is found, npos is returned.

The rfind() function finds the last occurrence of a substring or character within another
string. The form used here is:

size_type rfind(const char *str, size_type indx = npos) const

It returns the index of the last occurrence of str within the invoking string. The indx parameter
specifies the index at which the search will begin within the invoking string. If no match is
found, npos is returned.

Chapter 2: String Handling

To find the first occurrence of any character within a set of characters, call find_first_of().
Here are the forms used in this recipe or by the Bonus Example:

size_type find_first_of(const string &str, size_type indx = 0) const
size_type find_first_of(const char *str, size_type indx = 0) const

Both return the index of the first character within the invoking string that matches any
character in str. The search begins at index indx. npos is returned if no match is found. The
difference between the two is simply the type of str, which can be either a string or a null-
terminated string.

To find the first occurrence of any character that is not part of a set of characters, call
find_first_not_of(). Here are the forms used in this recipe or by the Bonus Example:

size_type find_first_not_of(const string &str, size_type indx = 0) const
size_type find_first_not_of(const char *str, size_type indx = 0) const

Both return the index of the first character within the invoking string that does not match
any character in str. The search begins at index indx. npos is returned if no match is found.
The difference between the two is simply the type of str, which can be either a string or a
null-terminated string.

To find the last occurrence of any character within a set of characters, call find_last_of().
The form used here is:

size_type find_last_of(const char *str, size_type indx = npos) const

It returns the index of the last character within the invoking string that matches any
character in str. The search begins at index indx. npos is returned if no match is found.

To find the last occurrence of any character that is not part of a set of characters, call
find_last_not_of(). The form used by this recipe is:

size_type find_last_not_of(const char *str, size_type indx = npos) const

It returns the index of the last character within the invoking string that does not match any
character in str. The search begins at index indx. npos is returned if no match is found.

NOTE As just described, the value npos is returned by the find... functions when no match is
found. The npos variable is of type string::size_type, which is some form of unsigned integer.
However, npos is initialized to —1. This causes npos to contain its largest possible unsigned
value. Microsoft currently recommends that if you will be comparing the value of some variable
to npos, then that variable should be declared to be of type string::size_type, rather than int or
unsigned, to ensure that the comparison is handled correctly in all cases. This is the approach
used in these recipes. However, it is not uncommon to see code in which npos is declared as an
int or unsigned.

Example

The following example shows the search functions in action:
// Search a string.

#include <iostream>

#include <string>

using namespace std;

61

62

Herb Schildt's C++ Programming Cookbook

void showresult (string s, string::size type 1i);

int main ()

{

}

string::size_type indx;

// Create a string.
string str("one two three, one two three");
string str2;

cout << "String to be searched: " << str << "\n\n";

cout << "Searching for the first occurrence of 'two'\n";
indx = str.find("two") ;
showresult (str, indx);

cout << "Searching for the last occurrence of 'two'\n";
indx = str.rfind("two") ;
showresult (str, indx);

cout << "Searching for the first occurrence of t or h\n";
indx = str.find first of ("th");
showresult (str, indx);

cout << "Searching for the last occurrence of t or h\n";
indx = str.find last_of ("th");
showresult (str, indx) ;

cout << "Searching for the first occurrence of any character other "
<< "than o, n, e, or space\n";

indx = str.find first not of("one ");

showresult (str, indx);

cout << "Searching for the last occurrence of any character other "
<< "than o, n, e, or space\n";

indx = str.find last not_of ("one ");

showresult (str, indx);

return 0;

// Display the results of the search.
void showresult (string s, string::size type i) ({

if (i == string::npos) {
cout << "No match found.\n";
return;

}

cout << "Match found at index " << i << endl;

cout << "Remaining string from point of match: "
<< s.substr (i) << "\n\n";

Chapter 2: String Handling

The output is shown here:

String to be searched: one two three, one two three

Searching for the first occurrence of 'two'
Match found at index 4
Remaining string from point of match: two three, one two three

Searching for the last occurrence of 'two'
Match found at index 19
Remaining string from point of match: two three

Searching for the first occurrence of t or h
Match found at index 4
Remaining string from point of match: two three, one two three

Searching for the last occurrence of t or h
Match found at index 24
Remaining string from point of match: hree

Searching for the first occurrence of any character other than o, n, e, or space
Match found at index 4
Remaining string from point of match: two three, one two three

Searching for the last occurrence of any character other than o, n, e, or space
Match found at index 25
Remaining string from point of match: ree

Bonus Example: A Tokenizer Class for string Objects

The C++ standard library contains the function strtok(), which can be used to tokenize a
null-terminated string (see Tokenize a Null-Terminated String). However, the string class does
not define a corresponding equivalent. Fortunately, it is quite easy to create one. Before
beginning, it is important to state that there are several different ways to approach this task.
This example shows just one of many.

The following program creates a class called tokenizer that encapsulates tokenization.
To tokenize a string, first construct a tokenizer, passing the string as an argument. Next,
call get_token() to obtain the individual tokens in the string. The delimiters that define the
boundaries of each token are passed to get_token() as a string. The delimiters can be
changed with each call to get_token(). The get_token() function returns an empty string
when there are no more tokens to return. Notice that get_token() makes use of the
find_first_of() and find_first_not_of() functions.

// Create a class called tokenizer that tokenizes a string.
#include <iostream>
#include <strings>

using namespace std;

// The tokenizer class is used to tokenize a string.
// Pass the constructor the string to be tokenized.
// To obtain the next token, call get token(),

// passing in a string that contains the delimiters.

63

64

Herb Schildt's C++ Programming Cookbook

class tokenizer ({
string s;
string::size type startidx;
string::size type endidx;

public:
tokenizer (const string &str) {
s = str;

startidx = 0;

}

// Return a token from the string.
string get_ token(const string &delims) ;

Vi

// Return a token from the string. Return an

// empty string when no more tokens are found.

// Pass the delimiters in delims.

string tokenizer::get token(const string &delims) {

// Return an empty string when there are no more
// tokens to return.
if (startidx == string::npos) return string("");

// Beginning at startidx, find the next delimiter.
endidx = s.find first of(delims, startidx);

// Construct a string that contains the token.
string tok(s.substr(startidx, endidx-startidx));

// Find the start of the next token. This is a
// character that is not a delimiter.
startidx = s.find first not of (delims, endidx) ;

// Return the next token.
return tok;

}

int main/()
// Strings to be tokenized.
string strA ("I have four, five, six tokens. ");
string strB("I might have more tokens!\nDo You?") ;

// This string contains the delimiters.
string delimiters (" ,.!?\n");

// This string will hold the next token.
string token;

// Create two tokenizers.
tokenizer tokA(stra);
tokenizer tokB(strB) ;

Chapter 2: String Handling

// Display the tokens in strA.
cout << "The tokens in strA:\n";
token = tokA.get token(delimiters) ;
while (token != "") {

cout << token << endl;

token = tokA.get token(delimiters);

}

cout << endl;

// Display the tokens in strB.
cout << "The tokens in strB:\n";
token = tokB.get token(delimiters) ;
while (token != "") {

cout << token << endl;

token = tokB.get token(delimiters);

}

return O;

}
Here is the output:

The tokens in strA:
T

have

four

five

six

tokens

The tokens in strB:
I

might

have

more

tokens

Do

You

There is one easy enhancement that you might want to try making to tokenize: a reset()
function. This function could be called to enable a string to be retokenized from the start.
This is easy to do. Simply set startidx to zero, as shown here:

void reset() { startidx = 0; }

Options and Alternatives
As mentioned, each of the find... functions has four forms. For example, here are all of the
forms of find():

size_type find(const string &str, size_type indx = 0) const
size_type find(const char *str, size_type indx = 0) const

size_type find(const char *str, size_type indx, size_type len) const
size_type find(char c#, size_type indx = 0) const

65

66 Herb Schildt's C++ Programming Cookbook

The first two forms were described earlier. The third form searches for the first occurrence
of the first len characters of str. The fourth form searches for the first occurrence of ch. In all
cases, the search begins at the index specified by indx within the invoking string, and the
index at which a match is found is returned. If no match is found, npos is returned. The
other find... functions have similar forms.

As mentioned in the overview at the start of this chapter, the string class fulfills the
general requirements for being an STL-compatible container. This means that it can be
operated on by the algorithms declared in <algorithm>. Therefore, a string object can be
searched by using the search algorithms, such as search(), find(), find_first_of(), and so
on. The one advantage that the algorithms offer is the ability to supply a user-defined
predicate that lets you specify when one character in the string matches another. This feature
is used by the recipe Create Case-Insensitive Search and Search-and-Replace Functions for string
Objects to implement a search function that ignores case differences. (The STL and algorithms
are covered in depth in Chapters 3 and 4.)

”~

 Create a Search-and-Replace Function for string Objects

I Key Ingredients
Headers Classes Functions
<string> string size_type find(const string &str,

size_type indx = 0) const
string &replace(size_type indx,
size_type len,
const string &str)

The string class provides very rich support for the replacement of one substring with another.
This operation is provided by the replace() function, of which there are ten forms. These ten
forms give you great flexibility in specifying how the replacement process will take place. For
example, you can specify the replacement string as a string object or as a null-terminated
string. You can specify what part of the invoking string is replaced by specifying indexes or
through the use of iterators. This recipe makes use of replace() along with the find() function
demonstrated by the preceding recipe to implement a search-and-replace function for string
objects. As you will see, because of the support that string provides through find() and
replace(), the implementation of search-and-replace is straightforward. It is also a much
cleaner implementation than is the same function implemented for null-terminated strings.
(See Create a Search-and-Replace Function for Null-Terminated Strings.)

Chapter 2: String Handling

Step-by-Step

To create a search-and-replace function for string objects involves these steps:

1. Create a function called search_and_replace() that has this prototype:

bool search and replace(string &str, const string &oldsubstr,
const string &newsubstr) ;

The string to be changed is passed via str. The substring to replace is passed in

oldsubstr. The replacement is passed in newsubstr.

2. Use the find() function to find the first occurrence of oldsubstr.
3. Use the replace() function to substitute newsubstr.

4. Return true if a replacement was made and false otherwise.

Discussion

The find() method is described by the preceding recipe and that discussion is not
repeated here.

Once the substring has been found, it can be replaced by calling replace(). There are ten
forms of replace(). The one used by this recipe is shown here:

string &replace(size_type indx, size_type len, const string &str)

Beginning at indx within the invoking string, this version replaces up to len characters with
the string in str. The reason that it replaces "up to" len characters is that it is not possible to
replace past the end of the string. Thus, if len + indx exceeds the total length of the string,
then only those characters from indx to the end will be replaced. The function returns a
reference to the invoking string.

Example

Here is one way to implement the search_and_replace() function:

// In the string referred to by str, replace oldsubstr with newsubstr.
// Thus, this function modifies the string referred to by str.
// It returns true if a replacement occurs and false otherwise.
bool search and replace(string &str, const string &oldsubstr,
const string &newsubstr) {
string::size type startidx;

startidx = str.find(oldsubstr) ;

if (startidx != string::npos) {
str.replace (startidx, oldsubstr.size(), newsubstr);
return true;

}

return false;

}

If you compare this version of search_and_replace() with the one created for null-terminated
strings, you will see that this version is substantially smaller and simpler. There are two reasons
for this. First, because objects of type string are dynamic, they can grow or shrink as needed.

67

Herb Schildt's C++ Programming Cookbook

Therefore, it is easy to replace one substring with another. There is no need to worry about
overrunning an array boundary when the length of the string is increased, for example.
Second, string supplies a replace() function that automatically handles the removal of the old
substring and the insertion of the new substring. This does not need to be handled manually, as
is the case when inserting into a null-terminated string.

The following example shows the search_and_replace() function in action.

// Implement search-and-replace for string objects.
#include <iostream>
#include <strings>

using namespace std;

bool search and replace(string &str, const string &oldsubstr,
const string &newsubstr) ;

int main()
string str = "This is a test. So is this.";
cout << "Original string: " << str << "\n\n";

cout << "Replacing 'is' with 'was':\n";

// The following replaces is with was. Notice that
// it passes string literals for the substrings.
// These are automatically converted into string objects.
while (search and replace(str, "is", "was"))
cout << str << endl;

cout << endl;

// Of course, you can explicitly pass string objects, too.
string oldstr("So") ;

string newstr ("So too");

cout << "Replace 'So' with 'So too'" << endl;
search and replace(str, oldstr, newstr);

cout << str << endl;

return O;

}

// In the string referred to by str, replace oldsubstr with newsubstr.
// Thus, this function modifies the string referred to by str.
// It returns true if a replacement occurs and false otherwise.
bool search and replace(string &str, const string &oldsubstr,
const string &newsubstr) {
string::size type startidx;

startidx = str.find(oldsubstr) ;

Chapter 2: String Handling

if (startidx != string::npos) {
str.replace (startidx, oldsubstr.size(), newsubstr);
return true;

1

return false;

}
The output is shown here:
Original string: This is a test. So is this.

Replacing 'is' with 'was':
Thwas 1s a test. So is this.
Thwas was a test. So is this.
Thwas was a test. So was this.
Thwas was a test. So was thwas.

Replace 'So' with 'So too!
Thwas was a test. So too was thwas.

Options and Alternatives

The replace() function has several other forms. Three more commonly used forms are
described here. All return a reference to the invoking string.

The following form of replace() takes a null-terminated string as the replacement string:

string &replace(size_type indx, size_type len, const char *str)

Beginning at indx within the invoking string, it replaces up to len characters with the string
in str.
To replace a substring with a portion of another string, use this form:

string &replace(size_type indx1, size_type lenl, const string &str,
size_type indx2, size_type len2)

It replaces up to lenl characters in the invoking string, beginning at indx1, with the len2
characters from the string in str, beginning at indx2.
The next form of replace() operates on iterators:

string &replace(iterator start, iterator end, const string &str)

The range specified by start and end is replaced with the characters in st.

The search_and_replace() function operates in a case-sensitive manner. It is possible
to perform a case-insensitive search-and-replace, but it takes a little work. One way is to
implement a case-insensitive search function that uses the standard search() STL algorithm.
This algorithm lets you specify a binary predicate that can be tailored to test two characters
for equality in a case-independent manner. You can then use this function to find the location
of the substring to be removed. To see this approach in action, see Create Case-Insensitive
Search and Search-and-Replace Functions for string Objects.

69

70 Herb Schildt's C++ Programming Cookbook

'

Operate on string Objects Through Iterators

I Key Ingredients
Headers Classes Functions
<string> string iterator begin()

iterator end()
reverse_iterator rbegin()
reverse_iterator rend()
iterator erase(iterator start, iterator end)
template <class Inlter>
void insert(iterator itr, Inlter start,
Inlter end)
string &replace(iterator start,
iterator end,
const char *str)

<algorithm> template <class Inlter, class T>
Inlter find(Inlter start,
Inlter end,
const T &val)
template <class Inlter, class Outlter,
class Func>
Outlter transform(Inlter start,
Inlter end,
Outlter result,
Func unaryFunc)

This recipe shows how to use iterators with objects of type string. As most readers will
know, iterators are objects that act much like pointers. They give you the ability to refer to
the contents of a container by using a pointer-like syntax. They are also the mechanism that
lets different types of containers be handled in the same way and enables different types of
containers to exchange data. They are one of C++'s most powerful concepts.

As explained in the overview of string near the start of this chapter, basic_string fulfills
the basic requirements of a container. Therefore, the string specialization of basic_string is,
essentially, a container for characters. One of the requirements of all containers is that they
support iterators. By supporting iterators, string gains three important benefits:

1. Iterators can streamline some types of string operations.

2. Iterators enable string objects to be operated on by the various STL algorithms.

3. Iterators enable string to be compatible with other STL containers. For example,
through iterators, you can copy the characters in a string into a vector or construct
a string from characters stored in a deque.

Chapter 2: String Handling

The string class supports all basic iterator operations. It also provides versions of several
of the functions, such as insert() and replace(), that are designed to work through iterators.
This recipe demonstrates the basic iterator operations and three iterator-enabled functions,
and shows how iterators enable string to be integrated into the overall framework of the STL.

NOTE For a detailed discussion of iterators, see Chapter 3, which presents STL-based recipes.

Step-by-Step
To operate on a string through iterators involves these steps:
1. Declare a variable that will hold an iterator. To do this, you must use one of the
iterator types defined by string, such as iterator or reverse_iterator.
. To obtain an iterator to the start of a string, call begin().
. To obtain an iterator to the end of a string, call end().
To obtain a reverse iterator to the start of the reversed string, call rbegin().

. To obtain a reverse iterator to the end of the reversed string, call rend().

o Ul R W N

. You can cycle through the characters in a string through an iterator in much the
same way that you can use a pointer to cycle through the elements of an array.

7. You can create a string object that is initialized with the characters pointed to by
a range of iterators. Among other uses, this lets you construct a string that contains
elements from another type of container, such as a vector.

8. Many of the functions defined by string define versions that operate through iterators.
The ones demonstrated by this recipe are erase(), insert(), and replace(). They enable
you to remove, insert, or replace characters within a string given iterators to the
endpoints of the characters.

9. Because the STL algorithms work through iterators, you can use any of the algorithms
on objects of type string. Two are demonstrated here: find() and transform(). They
require the <algorithm> header.

Discussion

A general overview of iterators is presented in Chapter 3, and that information is not repeated
here. However, it is useful to review a few key points. First, the object pointed to by an iterator
is accessed via the * operator in just the way that the * is used to access the object pointed to
by a pointer. As it applies to string, the object pointed to by an iterator is a char value. Second,
when an iterator is incremented, it points to the next object in the container. When it is
decremented, it points to the previous object. For string, this means that the iterator points to
the next or previous character.

There are two basic styles of iterators supported by string: forward and reverse. When
incremented, a forward iterator moves towards the end of the string and when
decremented, it moves towards the start of the string. A reverse iterator works oppositely.
When a reverse iterator is incremented, it moves towards the start of the string and when

72 Herb Schildt's C++ Programming Cookbook

decremented, it moves towards the end of the string. Of these two basic iterators, the string
class declares four basic types of iterators that have the following type names:

iterator Forward-moving iterator that can read and write what it points to.
const_iterator Forward-moving iterator that is read-only.
reverse_iterator Reverse-moving iterator that can read and write what it points to.
const_reverse_iterator Reverse-moving iterator that is read-only.

This recipe uses only iterator and reverse_iterator, but the other two work in the same
way, except that the object to which they point cannot be written.

In the discussions that follow, the generic type names Inlter and Outlter are used by
some of the functions. In this book, Inlter is an iterator type that is, at minimum, capable of
read operations. Outlter is an iterator type that is, at minimum, capable of write operations.
(Other types of iterators are discussed in Chapter 3.)

To declare an iterator to a string, use one of the aforementioned types. For example:

string::iterator itr;

declares a non-const forward iterator that can be used with a string object.

To obtain an iterator to the start of a string (which is the first character in the string), call
begin(). To obtain an iterator that points one past the end of the string, call end(). Thus, the
last character in the string is at end() —1. These functions are shown here:

iterator begin()
iterator end()

The advantage to having end() return an iterator to one past the last character is that very
efficient loops can be written that cycle through all the characters in a string. Here is an
example:

string::iterator itr;

for(itr = str.begin(); itr != str.end(); ++itr) {
//

}

When itr equals end(), all of the characters in str have been examined.

When using a reverse iterator, you can obtain a reverse iterator to the last character in
the string by calling rbegin(). To obtain a reverse iterator to one before the first character in
the string, call rend(). They are shown here:

reverse_iterator rbegin()
reverse_iterator rend()

A reverse iterator is used in just the same way that you use a regular iterator. The only
difference is that it moves through the string in the reverse direction.

The string class provides a constructor that lets you create a string that is initialized
by characters pointed to by iterators. It is shown here:

template <class Inlter> string(Inlter start, Inlter end,
const Allocator &alloc = Allocator())

Chapter 2: String Handling

The range of characters is specified by start and end. The type of these iterators is specified
by the generic type Inlter, which indicates that the iterators must support read operations.
However, they do not have to be of type string::iterator. This means that you can use this
constructor to create a string that contains characters from another container, such as a vector.

Several of string's functions have overloaded forms that use iterators to access the
contents of the string. Three representative ones are used by this recipe: insert(), erase(),
and replace(). The versions used by this recipe are shown here:

iterator erase(iterator start, iterator end)
string &replace(iterator start, iterator end, const char *str)
template <class InIter>

void insert(iterator itr, Inlter start, Inlter end)

The erase() method removes the characters in the range pointed to by start to end. It returns
an iterator to the character that follows the last character removed. The replace() function
replaces the characters in the range specified by start and end with str. It returns a reference
to the invoking object. (Other iterator-enabled versions of replace() let you pass a string

to str.) The insert() method inserts the characters in the range pointed to by start and end
immediately before the element specified by itr. In insert(), notice that start and end are of
the generic type Inlter, which means that the iterators must support read operations. All
string iterator types satisfy this constraint. So do many other iterators. Thus, you can insert
characters from another type of container into a string. This is one of the advantages of
iterators.

Because the STL algorithms work through iterators, you can use these algorithms on
strings. The STL algorithms are declared in <algorithm>, and they perform various operations
on containers. This recipe demonstrates the use of two algorithms, find() and transform(),
which are shown here:

template <class Inlter, class T>
Inlter find(Inlter start, Inlter end, const T &uval)

template <class Inlter, class Outlter, class Func>
Outlter transform(Inlter start, Inlter end, Outlter result, Func unaryFunc)

The find() algorithm searches the range pointed to by start and end for the value specified by
val. It returns an iterator to the first occurrence of the element or to end if the value is not in the
sequence. The transform() algorithm applies a function to a range of elements specified by start
and end, putting the outcome in result. The function to be applied is specified by unaryFunc. This
function receives a value from the sequence and must return its transformation. Thus, both the
parameter type and the return type must be compatible with the type of objects stored in the
container, which in the case of string is char. The transform() algorithm returns an iterator to
the end of the resulting sequence. Notice that result is of type Outlter, which means that it
must support write operations.

Example

The following example shows how to use iterators with string objects. It also demonstrates
iterator versions of string's member functions insert(), replace(), and find(). The STL
algorithms find() and transform() also are used.

3

[

Herb Schildt's C++ Programming Cookbook

// Demonstrate iterators with strings.
#include <iostream>

#include <string>

#include <cctypes>

#include <algorithm>

#include <vectors>

using namespace std;

int main/()

{

string strA("This is a test.");

// Create an iterator to a string.
string::iterator itr;

// Use an iterator to cycle through the characters

// of a string.

cout << "Display a string via an iterator.\n";

for(itr = strA.begin(); itr != strA.end(); ++itr)
cout << *itr;

cout << "\n\n";

// Use a reverse iterator to display the string in reverse.
cout << "Display a string in reverse using a reverse iterator.\n";
string::reverse iterator ritr;
for (ritr = strA.rbegin(); ritr != strA.rend(); ++ritr)
cout << *ritr;
cout << "\n\n";

// Insert into a string via an iterator.

// First, use the STL find() algorithm to obtain
// an iterator to the start of the first 'a'.
itr = find(strA.begin(), strA.end(), 'a');

// Next, increment the iterator so that it points to the
// character after 'a', which in this case is a space.
++1itr;

// Insert into str by using the iterator version of insert().
cout <<"Insert into a string via an iterator.\n";

string strB(" bigger") ;

strA.insert (itr, strB.begin(), strB.end());

cout << strA << "\n\n";

// Now, replace 'bigger' with 'larger'.
cout << "Replace bigger with larger.\n";
itr = find(strA.begin(), strA.end(), 'b');
strA.replace(itr, itr+6, "larger");

cout << strA << "\n\n";

Chapter 2: String Handling

// Now, remove ' larger'.

cout << "Remove ' larger'.\n";

itr = find(strA.begin(), strA.end(), 'l');
strA.erase(itr, itr+7);

cout << strA << "\n\n";

// Use an iterator with the STL transform() algorithm to convert
// a string to uppercase.
cout << "Use the STL transform() algorithm to convert a "
<< "string into uppercase.\n";
transform(strA.begin(), strA.end(), strA.begin(), toupper);
cout << strA << "\n\n";

// Create a string from a vector<chars>.

vector<char> vec;

for(int i=0; 1 < 10; ++1)
vec.push back ('A'+1i) ;

string strC(vec.begin(), vec.end());
cout << "Here is strC, which is constructed from a vector:\n";
cout << strC << endl;

return O;

}
The output is shown here:

Display a string via an iterator.
This is a test.

Display a string in reverse using a reverse iterator.
.tset a si sihT

Insert into a string via an iterator.
This is a bigger test.

Replace bigger with larger.
This is a larger test.

Remove ' larger'.
This is a test.

Use the STL transform() algorithm to convert a string into uppercase.
THIS IS A TEST.

Here is strC, which is constructed from a vector:
ABCDEFGHIJ

Options and Alternatives
As mentioned, several of the member functions defined by string have forms that operate
on or return iterators. In addition to insert(), erase(), and replace() used by this recipe,

[1]

76 Herb Schildt's C++ Programming Cookbook

string provides iterator-enabled versions of the append() and assign() functions. They are
shown here:

template<class Inlter> string &append(Inlter start, Inlter end)
template<class Inlter> string &assign(Inlter start, Inlter end)

This version of append() adds the sequence specified by start and end onto the end of the
invoking string. This version of assign() assigns the sequence specified by start and end to
the invoking string. Both return a reference to the invoking string.

Create Case-Insensitive Search and Search-and-Replace Functions

for string Objects

Key Ingredients

Headers Classes Functions
<cctype> int tolower(int ch)
<string> string iterator begin()

iterator end()

string &replace(iterator start, iterator end,
const string &newsubtr)

<algorithm> template <class Forlterd, class Forlter2,
class BinPred>
Forltrerl search(Forlterl start1,
Forlterl end1,
Forlter2 start2,
Forlter2 end2,
BinPred pfn)

Although string is very powerful, it does not directly support two very useful functions.

The first is a search function that ignores case differences. As virtually all readers know, case-
insensitive searching is both a common and valuable feature in many contexts. For example,
when searching a document for occurrences of the word "this", you usually want to find
"This", too. The second function is a case-insensitive search-and-replace function, which
replaces one substring with another independently of case differences. You could use such a
function, for example, to replace all instances of "www" or "WWW" with the words "World
Wide Web" in a single step. Whatever the purpose, it is easy to create case-insensitive search-
and-replace functions that operate on string objects. This recipe shows one way.

The functions developed by this recipe rely on iterators to access the characters within a
string. Because string is an STL-compatible container, it provides support for iterators. This
support is particularly important because it enables a string to be operated on by the STL
algorithms. This ability significantly expands the ways in which strings can be manipulated.

Chapter 2: String Handling

It also enables you to create streamlined solutions to what would otherwise be more
challenging tasks. (See the preceding recipe for information on using iterators with string.)

Step-by-Step

One way to create a search function that ignores case differences involves these steps:

1.

Create a comparison function called comp_ign_case() that performs a
case-insensitive comparison of two char values. Here is its prototype:

bool comp ign case(char x, char y);

Have the function return true if the two characters are equal and false otherwise.

. Create a function called search_ign_case() that has this prototype:

string::iterator search ign case(string &str, const string &substr);

The string to be searched is passed in str. The substring to search for is passed in
substr.

. Inside search_ign_case(), use the STL algorithm search() to search a string for a

substring. This algorithm searches one sequence for an occurrence of another. The
sequences are specified by ranges of iterators. Specify the comp_ign_case() function
created in Step 1 as the binary predicate that determines when one character equals
another. This enables search() to ignore case differences when searching. Note that
search() is declared in the <algorithm> header, which must be included.

. Have search_ign_case() return an iterator to the start of the first match or str.end()

if no match is found.

To create a search-and-replace function that ignores case differences, follow these steps:

1.

You will need the search_ign_case() function described by the preceding steps.
Therefore, if you have not yet created search_ign_case(), you must do so at this time.

. Create a function called search_and_replace_ign_case() that has this prototype:

bool search and replace ign case(string &str, const string &oldsubstr,
const string &newsubstr) ;

The string to be modified is passed in str. The sequence to be replaced is passed in
oldsubstr. The string to substitute is passed in newsubstr.

. Use search_ign_case() to find the first occurrence of oldsubstr within str.

4. Use the iterator version of string's replace() function to replace the first occurrence

of oldsubstr with newsubstr.

. Have search_and_replace_ign_case() return true if the replacement is made and

false if str did not contain an occurrence of oldsubstr.

Discussion

Before you can use the search() algorithm to perform a case-insensitive search, you must
create a function that compares two char values in a case-independent manner. It must
return true if the characters are equal and false otherwise. In the language of the STL, such a
function is called a binary predicate. (See Chapter 3 for a discussion of binary predicates.)

18

Herb Schildt's C++ Programming Cookbook

This function is used by the search() algorithm to compare two elements. By having this
function ignore case differences, the search will be conducted independently of case. Here is
one way to code this function:

bool comp_ign case(char x, char y) {
return tolower (x) == tolower (y);

}

Notice that this uses the standard tolower() function to obtain the lowercase equivalent of
each character. (See Ignore Case Differences When Comparing Null-Terminated Strings for details
on tolower().) By converting each argument to lowercase, case differences are eliminated.

To find a substring, call the search() algorithm. The version used by this recipe is
shown here:

template <class Forlterl, class Forlter2, class BinPred>
Forltrerl search(Forlterl start1, Forlterl end1,
Forlter2 start2, Forlter2 end?2,
BinPred pfn)

It searches for an occurrence of the sequence specified by start2 and end2 within the range
of the sequence specified by start]l and endl. In this book, the generic type names ForlIterl
and Forlter2 indicate iterators that have read /write capabilities and that can move in the
forward direction. The binary predicate pfn determines when two elements are equal. (In
this book, the generic type name BinPred indicates a binary predicate.) For the purposes of
this recipe, pass comp_ign_case to this parameter. If a match is found, the function returns
an iterator to the start of the matching sequence. Otherwise, end1 is returned.

The search_and_replace_ign_case() function uses the iterator returned by
search_ign_case() to find the location at which to substitute one substring for another.
To handle the actual replacement, you can use this version of string's replace() function,
which operates through iterators:

string &replace(iterator start, iterator end, const string &newsubstr)

It replaces the range specified by start and end with newsubstr. Thus, the invoking string is
modified. It returns a reference to the invoking string.

Example

Here is one way to create the search_ign_case() function. It uses comp_ign_case() to
determine when two characters are equal.

// Ignore case when searching for a substring.
// The string to search is passed in str. The substring to search
// for is passed in substr. It returns an iterator to the start of
// the match or str.end() if no match is found.
//
// Notice that it uses the search() algorithm and specifies the
// binary predicate comp ign case().
string::iterator search ign case(string &str, const string &substr) {
return search(str.begin(), str.end(),
substr.begin(), substr.end(),
comp_ign case);

Chapter 2: String Handling

As the comments indicate, search_ign_case() finds (independently of case differences) the
first occurrence of substr and returns an iterator to the start of the matching sequence. It
returns str.end() if no match is found.

Here is one way to implement search_and_replace_ign_case(). Notice that it uses
search_ign_case() to find the substring to replace.

// This function replaces the first occurrence of oldsubstr with
// newsubstr in the string passed in str. It returns true if a
// replacement occurs and false otherwise.
//
// Notice that this function modifies the string referred to by str.
// Also notice that it uses search ign case() to find the substring
// to replace.
bool search and replace ign case(string &str, const string &oldsubstr,
const string &newsubstr) {
string::iterator startitr;

startitr = search ign case(str, oldsubstr);

if (startitr != str.end()) {

str.replace (startitr, startitr+oldsubstr.size(), newsubstr);
return true;

}

return false;

}

This function replaces the first occurrence of oldsubstr with newsubstr. It returns true if a
replacement occurs (that is, if str contains oldsubstr) and false otherwise. As the comments
indicate, this function modifies str in the process. It uses search_ign_case() to find the first
occurrence of oldsubstr. Therefore, the search is performed independently of case differences.

The following example shows both search_ign_case() and search_and_replace_ign_case()
in action:

// Implement case-insensitive search and search-and-replace
// for string objects.

#include <iostream>

#include <string>

#include <cctype>

#include <algorithm>

using namespace std;

bool comp ign case(char x, char y);

string::iterator search ign case(string &str, const string &substr) ;

bool search and replace ign case(string &str, const string &oldsubstr,
const string &newsubstr) ;

int main ()
string strA("This is a test of case-insensitive searching.");
string strB("test");

19

80 Herb Schildt's C++ Programming Cookbook

}

!/
//
//
!/
//
//
//
st

}
//

string strC("TEST") ;
string strD("testing") ;

cout << "First, demonstrate search_ign case().\n";
cout << "String to be searched:\n" << strA << "\n\n";

cout << "Searching for " << strB << ". ";
if (search_ign case(strA, strB) != strA.end())
cout << "Found!\n";

cout << "Searching for " << strC << ". ";
if (search ign case(strA, strC) != strA.end())

cout << "Found!\n";

cout << "Searching for " << strD << ". ";

if (search ign case(strA, strD) != strA.end())
cout << "Found!\n";
else

cout << "Not Found.\n";

// Use the iterator returned by search ign case() to display
// the remainder of the string.
cout << "\nRemainder of string after finding 'of':\n";
string::iterator itr = search ign case(strA, "of");
while(itr != strA.end())

cout << *itr++;
cout << "\n\n";

// Now, demonstrate search and replace.

strA = "Alpha Beta Gamma alpha beta gamma";

cout << "Now demonstrate search and replace ign case().\n";

cout << "String that will receive replacements:\n" << strA <<

cout << "Replacing all occurrences of alpha with zeta:\n";

while (search and replace ign case(strA, "alpha", "zeta"))
cout << strA << endl;

return 0;

Ignore case when searching for a substring.

n \n\nll ;

The string to search is passed in str. The substring to search
for is passed in substr. It returns an iterator to the start of

the match or str.end() if no match is found.

Notice that it uses the search() algorithm and specifies the

binary predicate comp_ign case() .
ring::iterator search ign case(string &str, const string &substr) {
return search(str.begin(), str.end(),

substr.begin(), substr.end(),

comp_ign case) ;

Ignore case when comparing two characters for equality.

Chapter 2: String Handling

// Return true if the characters are equal, independently
// of case differences.
bool comp_ign case(char x, char y) {
return tolower (x) == tolower (y) ;
}

// This function replaces the first occurrence of oldsubstr with
// newsubstr in the string passed in str. It returns true if a
// replacement occurs and false otherwise.
//
// Note that this function modifies the string referred to by str.
// Also note that it uses search ign case() to find the substring
// to replace.
bool search and replace ign case(string &str, const string &oldsubstr,
const string &newsubstr) {
string::iterator startitr;

startitr = search ign case(str, oldsubstr);

if (startitr != str.end()) {
str.replace (startitr, startitr+oldsubstr.size(), newsubstr);
return true;

}

return false;

}
The output is shown here:

First, demonstrate search ign case().
String to be searched:
This is a test of case-insensitive searching.

Searching for test. Found!
Searching for TEST. Found!
Searching for testing. Not Found.

Remainder of string after finding 'of':
of case-insensitive searching.

Now demonstrate search and replace ign case() .
String that will receive replacements:
Alpha Beta Gamma alpha beta gamma

Replacing all occurrences of alpha with zeta:
zeta Beta Gamma alpha beta gamma
zeta Beta Gamma zeta beta gamma

Options and Alternatives
Although I personally favor implementing a case-insensitive search through the use of the
STL search() algorithm as this recipe does, there is another approach. You can implement

81

82

Herb Schildt's C++ Programming Cookbook

such a search function yourself, working character by character and manually attempting
to find a matching substring. Here is one way to do this:

// Implement search ign case() manually.

// Like the original version, the string to search is passed in str

// and the substring to search for is passed in substr.

// It returns an iterator to the start of the match or str.end()

// if no match is found.

string::iterator search ign case(string &str, const string &substr) {
string::iterator startl, found at;
string::const_iterator start2;

// If the string to match is null, return an iterator to
// the start of str.

if (substr.begin() == substr.end()) return str.begin();
startl = found at = str.begin();
while (startl != str.end()) {
start2 = substr.begin() ;
while (tolower (*startl) == tolower (*start2)) {
++startl;
++start2;
if (start2 == substr.end()) return found at;
if (startl == str.end()) return str.end();

}

++found_at;
startl = found at;

}

return str.end() ;

}

As you can see, the manual approach involves much more code. Furthermore, developing
and testing this function takes more time than does using the STL search() algorithm.
Finally, no attempt was made to optimize the preceding code. Optimization also takes a
significant amount of time. For these reasons, I prefer the STL algorithms over a "home grown'
approach in most cases.

The tolower() function converts characters based on the current locale. To compare
characters for a different locale, you can use a version of tolower() that is declared within
<locale>.

Although there is no advantage to doing so, it is also possible to convert each character
in the string to uppercase (rather than lowercase) to eliminate case differences. This is done
via the toupper() function, shown here:

int toupper(int ch)

It works just like tolower(), except that it converts characters to uppercase.

1

Chapter 2: String Handling

ra

‘. Convert a string Object into a Null-Terminated String

I Key Ingredients
Headers Classes Functions
<string> string const char *c_str() const

The string class provides easy mechanisms that convert a null-terminated string into a string
object. For example, you can construct a string that is initialized with a null-terminated string.
You can also assign a null-terminated string to a string object. Unfortunately, the reverse
procedure is not quite as easy. The reason is that a null-terminated string is not a data type, but a
convention. This means that you cannot initialize a null-terminated string with a string or assign
a string to a char * pointer, for example. However, string does provide the c_str() function
that converts a string object into a null-terminated string. This recipe shows the process.

Step-by-Step
To obtain a null-terminated string that contains the same character sequence as that
encapsulated by a string object, follow these steps:

1. Create an array of char that is large enough to hold the characters contained in the
string object, plus the null terminator. This can be a statically declared array or an
array that is dynamically allocated via new.

2. To obtain a pointer to a null-terminated string that corresponds to the string
contained in a string object, call c_str().

3. Copy the null-terminated string obtained in Step 2 into the array created in Step 1.

Discussion

To obtain a null-terminated string representation of the character sequence stored in
a string object, call c_str(), shown here:

const char *c_str() const

Although the character sequence in a string is not necessarily null-terminated, the pointer
returned by a call to c_str() is guaranteed to point to a null-terminated character array that
contains the same sequence. Notice, however, that the returned pointer is const. Thus, it
cannot be used to modify the string. Furthermore, this pointer is valid only until a non-
const member function is called on the same string object. As a result, you will usually want
to copy the null-terminated string into another array.

Example
The following example shows how to convert a string object into a null-terminated string:
// Convert a string object into a null-terminated string.

#include <iostream>
#include <string>

83

84

Herb Schildt's C++ Programming Cookbook

#include <cstrings
using namespace std;

int main()
string str("This is a test.");
char cstr[80];

cout << "Here is the original string:\n";
cout << str << "\n\n";

// Obtain a pointer to the string.
const char *p = str.c_str();

cout << "Here is the null-terminated version of the string:\n";
cout << p << "\n\n";

// Copy the string into a statically allocated array.
!/
// First, confirm that the array is long enough
// to hold the string.
if (sizeof (cstr) < str.size() + 1) {
cout << "Array is too small to hold the string.\n";
return 0;
}
strcpy (cstr, p);
cout << "Here is the string copied into cstr:\n" << cstr << "\n\n";

// Next,copy the string into a dynamically allocated array.

try {
// Dynamically allocate the array.
char *p2 = new char[str.size()+1];

// Copy the string into the array.
strcpy(p2, str.c_str());

cout << "String after being copied into dynamically-allocated array:\n";
cout << p2 << endl;

delete [] p2;

} catch(bad_alloc ba) {
cout << "Allocation Failure\n";
return 1;

}

return O;

}
The output is shown here:

Here is the original string:
This is a test.

Chapter 2: String Handling

Here is the null-terminated version of the string:
This is a test.

Here is the string copied into cstr:
This is a test.

String after being copied into dynamically-allocated array:
This is a test.

Options and Alternatives

As explained, the c_str() function returns a pointer to a null-terminated array of char. If you
only need access to the characters that comprise the sequence encapsulated by a string, without
the null terminator, then you can use the data() function. It returns a pointer to an array of char
that contains the characters, but that array is not null-terminated. It is shown here:

const char *data() const

Because a const pointer is returned, you cannot use it to modify the underlying characters
in the array. If you want to modify the character sequence, copy it into another array.

Although the pointer returned by c_str() is const, it is possible to override this by using
a const_cast, as shown here:

char *p = const_ cast<char *> (str.c_str());

After this statement executes, it would be possible to modify the character sequence pointed
to by p. However, doing this is not recommended! Changing the character sequence controlled
by a string object from code outside the object could easily cause the object to become
corrupted, possibly leading to a program crash or a security breach. Therefore, changes to a
string object must always take place through string member functions. You should never
attempt to change the underlying sequence through a pointer returned by c_str() or data().
If you see a construct like this, you should consider it invalid code and take steps to remedy
the situation.

rd

Implement Subtraction for string Objects

I Key Ingredients
Headers Classes Functions
<string> string string &erase(size_type indx = 0,
size_type len = npos)
size_type find(const string &str,
size_type indx = 0) const

86

Herb Schildt's C++ Programming Cookbook

As you know, the + operator is overloaded for objects of type string, and it concatenates
two strings and returns the result. However, the — operator is not overloaded for string.
Some programmers find this a bit surprising because, intuitively, one would expect the

— operator to be used to remove a substring from a string, as illustrated by this sequence:

string strA("one two three");
string strB;
strB = strA - "two";

At this point, one would expect strB to contain the sequence "one three", which is the
original sequence with the word "two" removed. Of course, this is not possible using only
the operators defined for string by the standard library, because subtraction is not one of
them. Fortunately, it is quite easy to remedy this situation, as this recipe shows.

To support substring subtraction, this recipe implements both the — and the —= operators
for objects of type string. Each removes the first occurrence of the string on the left from the
string on the right. In the case of —, the result is returned but neither operand is modified.
For —=, the substring is removed from the left operand. Thus, the left operand is modified.

Step-by-Step

To overload operator—() for objects of type string involves these steps:

1. Create a version of operator—() that has the following prototype:
string operator- (const string &left, const string &right) ;

When one string is subtracted from another, the string on the left will be referred to
by left and the string on the right will be referred to by right.

2. Inside operator—(), create a string that will hold the result of the subtraction, and
initialize that string with the character sequence in left.

3. Use find() to find the first occurrence of right in the result string.
4. If a matching substring is found, use erase() to remove the substring from the result
string.

5. Return the resulting string.
To overload operator—=() for objects of type string involves these steps:

1. Create a version of operator—=() that has the following prototype:
string operator-=(string &left, const string &right) ;

Here, the string on the left will be referred to by left and the string on the right will
be referred to by right. Furthermore, left will receive the result of the subtraction.

2. Inside operator—(), use find() to find the first occurrence of right in the string
referred to by left.

3. If a matching substring is found, use erase() to remove the substring from left. This
results in left being modified.

4. Return left.

Chapter 2: String Handling

Discussion

When binary operators are overloaded by non-member functions, the operand on the left is
always passed in the first parameter and the operand on the right is always passed in the
second parameter. Therefore, given an operator—() function with this prototype:

string operator- (const string &left, const string &right) ;

the expression

strA - strB

causes a reference to strA to be passed to left and a reference to strB to be passed to right.
Furthermore, given an operator—=() function with this prototype:

string operator-=(string &left, const string &right)
The statement

strA -= strB;

causes a reference to strA to be passed to left and a reference to strB to be passed to right.

Although there is no mechanism that enforces it, usually it is better to overload operators
in a manner consistent with their normal meaning and effects. Therefore, typically, when
a binary operator such as - is overloaded, the result is returned but neither operand is
modified. This is in keeping with the normal usage of the — in expressions such as 10-3. In
this case, the result is 7, but neither 10 nor 3 is modified. Of course, the situation is different
for the —= operation. In this case, the operand on the left receives the outcome of the
operation. Therefore, typically, an overloaded operator—=() modifies the left operand. This
recipe follows these conventions.

The actual process of removing the first occurrence of a substring is quite easy, involving
only two main steps. First, string's find() function is called to locate the start of the first
match. The find() function is detailed in Search a string Object, but here is a brief summary.
The find() function has several forms. The one used here is:

size_type find(const string &str, size_type indx = 0) const

It returns the index of the first occurrence of str within the invoking string. The search
begins at the index specified by indx. npos is returned if no match is found.

Assuming a match is found, the substring is removed by calling erase(). This function is
discussed in Perform Basic Operations on string Objects. Here is a quick recap. The erase()
function has three forms. The one used by this recipe is shown here:

string &erase(size_type indx = 0, size_type len = npos)

Beginning at indx, it removes len characters from the invoking string. It returns a reference
to the invoking string.

When implementing operator—(), neither operand should be modified. Therefore,
a temporary string that will hold the result of the subtraction must be used. Initialize this
string with the character sequence in the left operand. Then, remove the substring specified
by the right operand. Finally, return the result.

81

88

Herb Schildt's C++ Programming Cookbook

When implementing operator—=(), the left operand must contain the result of the
subtraction. Therefore, remove the substring specified by the right operand from the string
referred to by the left operand. Even though the left operand contains the result, you should
also return the resulting string. This enables the —= operator to be used as part of a larger
expression.

Example

Here is one way to implement operator—() and operator—=() for objects of type string:

// Overload - (subtraction) for string objects so that it removes

// the first occurrence of the substring on the right from the

// string on the left and returns the result. Neither

// operand is modified. If the substring was not found, the

// result contains the same string as the left operand.

string operator- (const string &left, const string &right)
string::size_type i;
string result (left) ;

i = result.find(right) ;
if (i != string::npos)
result.erase (i, right.size());

return result;

}

// Overload -= for string objects. It removes the first
// occurrence of the substring on the right from the string
// on the left. Thus, the string referred to by left is modified.
// The resulting string is also returned.
string operator-=(string &left, const string &right) {
string::size type i;
i = left.find(right) ;
if (i != string::npos)
1

eft.erase(i, right.size());

return left;

}

The following example shows these operators in action:
// Implement operator- () and operator-=() for strings.
#include <iostream>
#include <string>

using namespace std;

string operator- (const string &left, const string &right);
string operator-=(string &left, const string &right) ;

int main()

{

Chapter 2: String Handling

string str("This is a test.");
string res_str;

cout << "Contents of str: " << str << "\n\n";

// Subtract "is" from str and put the result in res_str.

res str = str - "is";
cout << "Result of str - \"is\": " << res_str << "\n\n";
// Use -= to subtract "is" from res str. This puts the result
// back into res_ str.
res_str -= "is";
cout << "Result of res str -= \"is\": " << res str << "\n\n";
cout << "Here is str again: " << str
<< "\nNotice that str is unchanged by the preceding "
<< "operations." << "\n\n";

cout << "Here are some more examples:\n\n";

// Attempt to subtract "xyz". This causes no change.
res_str = str - "xyz";
cout << "Result of str - \"xyz\": " << res_str << "\n\n";

// Remove the last three characters from str.
res_str = str - "st.";
cout << "Result of str - \"st.\": " << res str << "\n\n";

// Remove a null string, which results in no change.

res str = str - "";
cout << "Result of str - \"\": " << res str << "\n\n";
return 0;
// Overload - (subtraction) for string objects so that it removes

// the first occurrence of the substring on the right from the
// string on the left and returns the result. Neither
// operand is modified. If the substring was not found, the
// result contains the same string as the left operand.
string operator- (const string &left, const string &right)
string::size type i;
string result (left) ;

i = result.find(right) ;
if (i != string::npos)
result.erase (i, right.size());

return result;

}

// Overload -= for string objects. It removes the first
// occurrence of the substring on the right from the string
// on the left. Thus, the string referred to by left is modified.

89

90

Herb Schildt's C++ Programming Cookbook

// The resulting string is also returned.
string operator-=(string &left, const string &right) ({
string::size type i;

= left.find(right) ;
f(i !'= string::npos)
left.erase (i, right.size());

i
i

return left;

}

The output is shown here:

Contents of str: This is a test.
Result of str - "is": Th is a test.
Result of res_str -= "is": Th a test.

Here is str again: This is a test.
Notice that str is unchanged by the preceding operations.

Here are some more examples:

Result of str - "xyz": This is a test.
Result of str - "st.": This is a te
Result of str - "": This is a test.

Options and Alternatives

The versions of operator—() and operator-=() described by the recipe remove only the first
occurrence of the substring on the right from the string on the left. However, with a bit of
work, you can change their operation so that they remove all occurrences of the substring.
Here is one approach:

// Overload - (subtraction) for string objects so that it removes
// ALL occurrences of the substring on the right from the
// string on the left. The result is returned. Neither operand
// is modified.
string operator- (const string &left, const string &right)
string::size type i;
string result (left) ;

if (right 1= "n) {
do {
i = result.find(right) ;
if (i != string::npos)
result.erase (i, right.size());
} while(i != string::npos);

}

Chapter 2: String Handling

return result;

}

// Overload -= for string objects so that it removes

// ALL occurrences of the substring on the right from the string

// on the left. The result is contained in the string referred

// to by the left operand. Thus, the left operand is modified.

// The resulting string is also returned.

string operator-=(string &left, const string &right) {
string::size type i;

if (right 1= "m) {
do {
i = left.find(right) ;
if (i != string: :npos)
left.erase(i, right.size());
} while(i != string::npos);

}

return left;

}

Another option that you may find helpful in some cases is to implement string subtraction
so that it operates independently of case differences. To do this, use the approach described in
Create Case-Insensitive Search and Search-and-Replace Functions for string Objects to perform a
case-insensitive search to find the substring to remove.

9

This page intentionally left blank

CHAPTER
Working with STL Containers

Library (STL). Two chapters are needed because the STL is an extraordinarily large

and important part of C++. Not only does it provide off-the-shelf solutions to some of
programming's most challenging problems, it also redefines the way in which one approaches
many common tasks. For example, instead of having to provide your own code for a linked
list, you can use the STL's list class. If your program needs to associate a key with a value and
provide a means of finding that value given the key, it can use the map class. Because the
STL provides solid, debugged implementations of the most commonly used "data engines,"
you can use one whenever it is needed, without going through the time and trouble to
develop your own.

This chapter starts with an overview of the STL and then presents recipes that demonstrate
the core of the STL.: its containers. In the process, it shows how iterators are used to access and
cycle through the contents of a container. The following chapter shows how to use algorithms
and several other key components of the STL.

Here are the recipes contained in this chapter:

I I This is the first of two chapters that present recipes that use the Standard Template

¢ Basic Sequence Container Techniques

¢ Use vector

¢ Use deque

¢ Use list

¢ Use the Sequence Container Adaptors: stack, queue, and priority_queue
¢ Store User-Defined Objects in a Container

* Basic Associative Container Techniques

e Use map

¢ Use multimap

¢ Use set and multiset

NOTE For an in-depth description of the STL, see my book STL Programming from the Ground
Up. Much of the overview and descriptions in this chapter are adapted from that work. The STL
also receives extensive coverage in my book C++: The Complete Reference.

93

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

94

Herb Schildt's C++ Programming Cookbook

STL Overview

At its core, the Standard Template Library is a sophisticated set of template classes and
functions that implements many popular and commonly used data structures and algorithms.
For example, it includes support for vectors, lists, queues, and stacks. It also supplies many
algorithms—such as sorting, searching, and merging—that operate on them. Because the STL
is constructed from template classes and functions, the data structures and algorithms can be
applied to nearly any type of data. This is, of course, part of its power.

The STL is organized around three foundational items: containers, algorithms, and iterators.
Put simply, algorithms act on containers through iterators. More than anything else, the
design and implementation of these features determine the nature of the STL. In addition to
containers, algorithms, and iterators, the STL relies on several other standard elements for
support: allocators, adaptors, function objects, predicates, binders, and negators. A brief description
of each follows.

Containers

As the name implies, a container is an object that can hold other objects. There are several
different types of containers. For example, the vector class defines a dynamic array, deque
creates a double-ended queue, and list provides a linked list. These containers are called
sequence containers because in STL terminology, a sequence is a linear list. The STL also
defines associative containers, which allow efficient retrieval of values based on keys. Thus, the
associative containers store key/value pairs. A map is an example. It stores key/value pairs
in which each key is unique. This makes it easy to retrieve a specific value given its key.

Algorithms

Algorithms act on containers. Their capabilities include initializing, sorting, searching,
merging, replacing, and transforming the contents of a container. Many algorithms operate
on a range of elements within a container.

Iterators

Iterators are objects that act, more or less, like pointers. They give you the ability to cycle
through the contents of a container in much the same way that you would use a pointer to
cycle through an array. There are five types of iterators:

Iterator Access Allowed

Random Access Store and retrieve values. Elements may be accessed randomly.
Bidirectional Store and retrieve values. Forward- and backward-moving.
Forward Store and retrieve values. Forward-moving only.

Input Retrieve, but not store, values. Forward-moving only.

Output Store, but not retrieve, values. Forward-moving only.

In general, an iterator that has greater access capabilities can be used in place of one that
has lesser capabilities. For example, a forward iterator can be used in place of an input
iterator.

Chapter 3: Working with STL Containers

Iterators are handled just like pointers. You can increment and decrement them. You can
apply the * and —> operators to them. Iterators are declared using the iterator type defined
by the various containers.

The STL also supports reverse iterators. Reverse iterators are either bidirectional or
random-access iterators that move through a sequence in the reverse direction. Thus, if a
reverse iterator points to the end of a sequence, incrementing that iterator will cause it to
point to one element before the end.

All iterators must support the types of pointer operations allowed by their category. For
example, an input iterator class must support —>, ++, *, ==, and !=. Further, the * operator
cannot be used to assign a value. By contrast, a random-access iterator must support —>, +,
++,—,—— %, <, >, <= >=,-=,+=, ==, =, and []. Also, the * must allow assignment. The
operations that are supported for each type of iterator are shown here:

Iterator Operations Supported

Random Access o> = 4 o, - [], <, >, <=, 0, o=, 4=, ==, U=
Bidirectional ¥, >, = ++, ——, ==, |=

Forward ¥ > =, ++, ==, I=

Input B

Output * = 4+

When referring to the various iterator types in template descriptions, this book will use
the following terms:

Term Represents

Bilter Bidirectional iterator

Forlter Forward iterator

Inlter Input iterator

Outlter Output iterator

Randlter Random-access iterator
Allocators

Each container has defined for it an allocator. Allocators manage memory allocation for a
container. The default allocator is an object of class allocator, but you can define your own
allocators, if needed, for specialized applications. For most uses, the default allocator is
sufficient.

Function Objects

Function objects are instances of classes that define operator(). There are several predefined
function objects, such as less(), greater(), plus(), minus(), multiplies(), and divides().
Perhaps the most widely used function object is less(), which determines when one object
is less than another. Function objects can be used in place of function pointers in the

95

96

Herb Schildt's C++ Programming Cookbook

STL algorithms. Function objects increase the efficiency of some types of operations and
provide support for certain operations that would not otherwise be possible using only a
function pointer.

Adaptors

In the most general sense, an adaptor transforms one thing into another. There are container
adaptors, iterator adaptors, and function adaptors. An example of a container adaptor is
queue, which adapts the deque container for use as a standard queue.

Predicates

Several of the algorithms and containers use a special type of function called a predicate.
There are two variations of predicates: unary and binary. A unary predicate takes one
argument. A binary predicate has two arguments. These functions return true/false results,
but the precise conditions that make them return true or false are defined by you. In this
book, when a unary predicate function is required, it will be notated using the type UnPred.
When a binary predicate is required, the type BinPred will be used. In a binary predicate,
the arguments are always in the order of first, second. For both unary and binary predicates,
the arguments will contain values of the type of objects being stored by the container.

Some algorithms use a special type of binary predicate that compares two elements.
Comparison functions return true if their first argument is less than their second. In this book,
comparison functions will be notated using the type Comp.

Binders and Negators

Two other entities that populate the STL are binders and negators. A binder binds an
argument to a function object. A negator returns the complement of a predicate. Both
increase the versatility of the STL.

The Container Classes

At the core of the STL are its containers. They are shown in Table 3-1. Also shown are the
headers necessary to use each container. As one might expect, each container has different
capabilities and attributes.

Containers are implemented using template classes. For example, the template
specification for the deque container is shown here. All containers use similar specifications.

template <class T, class Allocator = allocator<T> > class deque

Here, the generic type T specifies the type of objects held by the deque. The allocator used
by the deque is specified by Allocator, which defaults to the standard allocator class. For
the vast majority of applications, you will simply use the default allocator, and that is what
all of the code in this chapter does. However, it is possible to define your own allocator class
if a special allocation scheme is ever needed. If you are not familiar with default arguments
in templates, just remember that they work in much the same way as default arguments in
functions. If the generic type argument is not specified explicitly when an object is created,
then the default type is used.

Chapter 3: Working with STL Containers
Container Description Required Header
deque A double-ended queue. <deque>
list A linear list. <list>
map Stores key/value pairs in which each key is <map>
associated with only one value.
multimap Stores key/value pairs in which one key may <map>
be associated with two or more values.
multiset A set in which each element is not <set>
necessarily unique.
priority_queue A priority queue. <queue>
queue A queue. <queue>
set A set in which each element is unique. <set>
stack A stack. <stack>
vector A dynamic array. <vector>

TaBLe 3-1 Containers Defined by the STL

Each container class includes several typedefs that create a set of standard type names.
Several of these typedef names are shown here:

size_type Some type of unsigned integer.

reference A reference to an element.

const_reference A const reference to an element.

iterator An iterator.

const_iterator A const iterator.

reverse_iterator A reverse iterator.

const_reverse_iterator A const reverse iterator.

The type of value stored in a container. Same as T for
sequence containers.

value_type

allocator_type The type of the allocator.

key_type The type of a key.

As mentioned, there are two broad categories of containers: sequence and associative.
The sequence containers are vector, list, and deque. The associative containers are map,
multimap, set, and multiset. The sequence containers operate on sequences, which are
essentially linear lists of objects. The associative containers operate on lists of keys.
Associative containers that implement maps operate on key/value pairs and allow the
retrieval of a value given its key.

The stack, queue, and priority_queue classes are called container adaptors because
they use (i.e., adapt) one of the sequence containers to hold their elements. Thus, one of the

91

Herb Schildt's C++ Programming Cookbook

sequence containers underlies the functionality provided by stack, queue, and priority_queue.
From the programmer's perspective, the container adaptors look and act like the other
containers.

Common Functionality

The STL specifies a set of requirements that all containers must satisfy. By specifying a

common functionality, the STL ensures that all containers can be acted on by algorithms and

that all containers can be used in a well-understood, consistent manner that is independent

of the details of each container implementation. This is another major strength of the STL.
All containers must support the assignment operator. They must also support all of the

logical operators. In other words, all containers must support these operators:

=, ==, <, <:, !:, >’ >=

All containers must supply a constructor that creates an empty container and a copy
constructor. They must supply a destructor that releases all memory used by the container
and calls the destructor for every element in the container.

All containers must also support iterators. Among other advantages, this ensures that
all containers can be operated on by algorithms.

All containers must provide the following functions:

iterator begin() Returns an iterator to the first element in the container.

const_iterator begin() const | Returns a const iterator to the first element in the container.

bool empty() const Returns true if the container is empty.

iterator end() Returns an iterator to one past the last element in the container.

const_iterator end() const Returns a const iterator to one past the last element in the
container.

size_type max_size() const | Returns the maximum number of elements that the container
can hold.

size_type size() const Returns the number of elements currently stored in the container.

void swap(ContainerType c) Exchanges the contents of two containers.

A container that supports bidirectional access to its elements is called a reversible
container. In addition to the basic container requirements, a reversible container must also
provide reverse iterators and the following functions:

reverse_iterator rbegin() Returns a reverse iterator to the last element in the
container.

const_reverse_iterator rbegin() const Returns a const reverse iterator to the last element
in the container.

reverse_iterator rend() Returns a reverse iterator to one before the first
element in the container.

const_reverse_iterator rend() const Returns a const reverse iterator to one before the
first element in the container.

Sequence Container Requirements

Chapter 3: Working with STL Containers

In addition to the functionality common to all containers, a sequence container adds the

following functions:

void clear()

Removes all elements in the container.

iterator erase(iterator i)

Removes the element pointed to by i. Returns an
iterator to the element after the one removed.

iterator erase(iterator start, iterator end)

Removes elements in the range specified by start
and end. Returns an iterator to the element that
follows the last element removed.

iterator insert(iterator i, const T &val)

Inserts val immediately before the element
specified by i. Returns an iterator to the element.

void insert(iterator i, size_type num,
const T &val)

Inserts num copies of val immediately before the
element specified by i.

template <class Inlter>
void insert(iterator i, Inlter start,
Inlter end)

Inserts the sequence defined by start and end
immediately before the element specified by i.

The STL also defines a set of functions for sequence containers that are optional, but
often implemented. These are shown here:

reference at(size_type idx)

Returns a reference to the element specified by idx.

const_reference at(size_type idx) const

Returns a const reference to the element specified
by idx.

reference back()

Returns a reference to the last element in the
container.

const_reference back() const

Returns a const reference to the last element in the
container.

reference front()

Returns a reference to the first element in the
container.

const_reference front() const

Returns a const reference to the first element in the
container.

reference operator|](size_type idx)

Returns a reference to the element specified by idx.

const_reference
operator|](size_type idx) const

Returns a const reference to the element specified
by idx.

void pop_back()

Removes the last element in the container.

void pop_front()

Removes the first element in the container.

void push_back(const T &val)

Adds an element with the value specified by val to
the end of the container.

void push_front(const T &val)

Adds an element with the value specified by val to
the beginning of the container.

99

100

Herb Schildt's C++ Programming Cookbook

Sequence containers must also supply constructors that enable a container to be
initialized by elements specified by a pair of iterators or with a specified number of a
specified element. Of course, a sequence container is free to supply additional functionality.

Associative Container Requirements

In addition to the functionality required of all containers, associative containers have
several other requirements. First, all associative containers must support the following

functions:

void clear()

Removes all elements from the container.

size_type count(const key_type &k) const

Returns the number of times k occurs in the container.

void erase(iterator i)

Removes the element pointed to by i.

void erase(iterator start, iterator end)

Removes the elements in the range start to end.

size_type erase(const key_type &k)

Removes elements that have keys with the value k.
Returns the number of elements that have been removed.

pair<iterator, iterator>
equal_range(const key_type &k)

Returns a pair of iterators that point to the upper bound
and the lower bound in the container for the specified key.

pair<const_iterator, const_iterator>
equal_range(const key_type &k) const

Returns a pair of const iterators that point to the upper
bound and the lower bound in the container for the
specified key.

iterator find(const key_type &k)

Returns an iterator to the specified key. If the key is not
found, then an iterator to the end of the container is
returned.

const_iterator find(const key_type &k)
const

Returns a const iterator to the specified key. If the key
is not found, then an iterator to the end of the container
is returned.

pair<iterator, bool>
insert(const value_type &val)

Inserts val into the container. If the container requires
unique keys, then val is inserted only if it does not already
exist. If the element is inserted, pair<iterator, true> is
returned. Otherwise, pair<iterator, false> is returned.

iterator insert(iterator start,
const value_type &val)

Inserts val. The search for the proper insertion point
begins at the element specified by start. For containers
that require unique keys, elements are inserted only if
they do not already exist. An iterator to the element is
returned.

template <class Inlter>
void insert(Inlter start, Inlter end)

Inserts a range of elements. For containers that require
unique keys, elements are inserted only if they do not
already exist.

key_compare key_comp() const

Returns the function object that compares two keys.

iterator lower_bound(const key_type &k)

Returns an iterator to the first element with a key equal
to or greater than k.

const_iterator
lower_bound(const key_type &k) const

Returns a const iterator to the first element with a key
equal to or greater than k.

Chapter 3: Working with STL Containers 101

iterator upper_bound(const key_type &k) Returns an iterator to the first element with a key
greater than k.

const_iterator Returns a const iterator to the first element with a key
upper_bound(const key_type &k) const | greater than k.

value_compare value_comp() const Returns the function object that compares two values.

Notice that some of the functions return a pair object. This is a class that encapsulates
two objects. For associative containers that are maps, value_type represents a pair that
encapsulates a key and value. The pair class is explained in detail in Basic Associative
Container Techniques.

Associative containers must supply constructors that enable a container to be initialized
by elements specified by a pair of iterators. They must also support constructors that let you
specify the comparison function used to compare two keys. Of course, an associative
container is free to supply additional functionality.

Performance Issues

There is one other important aspect to the STL that adds to its power and general applicability:
performance guarantees. Although a compiler manufacturer is free to implement the underlying
mechanism used by each container and algorithm in its own way, all implementations
must conform to the performance guarantees specified by the STL. The following general
performance categories are defined:

constant
linear

logarithmic

Since different containers store their contents differently, they will have different performance
guarantees. For example, insertion into the middle of a vector takes linear time. By contrast,
insertion into a list takes constant time. Different algorithms might also behave differently.
For example, the sort() algorithm executes proportional to N log N, but the find() algorithm
runs in linear time.

In some cases, an operation will be said to take amortized constant time. This is the term used
to describe a situation in which an operation usually takes constant time, but occasionally
requires longer. (For example, insertions onto the end of a vector normally occur in constant
time, but if more memory must be allocated, then the insertion requires linear time.) If the
longer operation is rare enough, then it can be thought of as being amortized over a number
of shorter operations.

In general, the STL specification requires that the containers and algorithms be implemented
using techniques that ensure (loosely speaking) optimal runtime performance. This is important
because it guarantees to you, the programmer, that the STL building blocks meet a certain
level of efficiency no matter what implementation of the STL you are using. Without such a
guarantee, the performance of STL-based code would depend entirely upon each individual
implementation and could vary widely.

102 Herb Schildt's C++ Programming Cookbook

ra

" Basic Sequence Container Techniques

I Key Ingredients
Headers Classes Functions
<vector> vector iterator begin()

void clear()

bool empty() const

iterator end()

iterator erase(iterator i)

iterator insert(iterator i, const T &val)
reverse_iterator rbegin()
reverse_iterator rend()

size_type size() const

void swap(vector<T, Allocator> &ob)

<vector> template <class T, class Allocator>
bool operator==(const vector<T, Allocator>
&leftop,
const vector<T, Allocator>
&rightop)

template <class T, class Allocator>
bool operator<(const vector<T, Allocator>
&leftop,
const vector<T, Allocator>
&rightop)
template <class T, class Allocator>
bool operator>(const vector<T, Allocator>
&leftop,
const vector<T, Allocator>
&rightop)

All sequence containers share a common functionality. For example, all allow you to add
elements to the container, remove elements from the container, or cycle through the
container via an iterator. All support the assignment operator and the logical operators, and
all sequence containers are constructed in the same way. This recipe describes this common
functionality, showing the basic techniques that apply to all sequence containers.

This recipe shows how to:

¢ Create a sequence container.
¢ Add elements to the container.

¢ Determine the size of the container.

¢ Use an iterator to cycle through the container.

Chapter 3: Working with STL Containers

¢ Assign one container to another.
¢ Determine when one container is equivalent to another.
¢ Remove elements from the container.
¢ Exchange the elements in one container with another.
¢ Determine if a container is empty.
This recipe uses the vector container class, but only those methods common to all sequence

containers are employed. Therefore, the same general principles can be applied to any
sequence container type.

Step-by-Step
To create and use a sequence container involves these steps:
1. Create an instance of the desired container. In this recipe, vector is used, but any
other sequence container could be substituted.
. Add elements to the container by calling insert().
. Obtain the number of elements in the container by calling size().
. Determine if the container is empty (i.e., contains no elements) by calling empty().
. Remove elements from the container by calling erase().

. Remove all elements from a container by calling clear().

N O O LW

. Obtain an iterator to the start of the sequence by calling begin(). Obtain an iterator
to one past the end of the sequence by calling end().

8. For reversible sequence containers, obtain a reverse iterator to the end of the
sequence by calling rbegin(). Obtain a reverse iterator to one before the start of the
sequence by calling rend().

9. Cycle through the elements in the container via an iterator.
10. Exchange the contents of one container with another via swap().

11. Determine when one container is equal to, less than, or greater than another.

Discussion

Although the internal operation of the STL is quite sophisticated, using the STL is actually
quite easy. In many ways, the hardest part of using the STL is deciding what type of container
to use. Each offers certain benefits and trade-offs. For example, vector is very good when a
random-access, array-like object is required and not too many insertions or deletions are
required. A list offers low-cost insertion and deletion, but trades away speedy look-ups. A
double-ended queue is supported by deque. This recipe uses vector to demonstrate the basic
sequence container operations, but the program will work with either list or deque. This is
one of the major advantages of the STL; all sequence containers support a base level of
common functionality.

The template specification for vector is shown here:

template <class T, class Allocator = allocator<T> > class vector

103

104

Herb Schildt's C++ Programming Cookbook

Here, T is the type of data being stored and Allocator specifies the allocator, which defaults
to the standard allocator. To use vector, you must include the header <vector>.

The vector class supports several constructors. The two used in this recipe are those
required by all sequence containers. They are shown here:

explicit vector(const Allocator &alloc = Allocator())

vector(const vector<T, Allocator> &ob)

The first form constructs an empty vector. The second form is vector's copy constructor.

After a container has been created, objects can be added to it. One way to do this that
works for all sequence containers is to call insert(). All sequence containers support at least
three versions of insert(). The one used here is:

iterator insert(iterator i, const T &uval)

It inserts val into the invoking container at the point specified by i. It returns an iterator to
the inserted element. A sequence container will automatically grow as needed when
elements are added to it.

You can remove one or more elements from a sequence container by calling erase(). It
has at least two forms. The one used by this recipe is shown here:

iterator erase(iterator 7)

It removes the element pointed to by i. It returns an iterator to the element after the one
removed. To remove all elements in a container, call clear(). It is shown here:

void clear()

You can determine the number of elements in a container by calling size(). To determine
if a container is empty, call empty(). Both functions are shown here:

bool empty() const

size_type size() const

You can obtain an iterator to the start of the sequence by calling begin(). An iterator to
one past the last element in the sequence is obtained by calling end(). These functions are
shown here:

iterator begin()

iterator end()
There are also const versions of these functions.

To declare a variable that will be used as an iterator, you must specify the iterator type

of the container. For example, this declares an iterator that can point to elements within
a vector<double>:

vector<doubles>: :iterator itr;

It is useful to emphasize that end() does not return an iterator that points to the last
element in a container. Instead, it returns an iterator that points to one past the last element.

Chapter 3: Working with STL Containers 105

Thus, the last element in a container is pointed to by end() — 1. This feature lets you write
very efficient algorithms that cycle through all of the elements of a container, including
the last one, using an iterator. When the iterator has the same value as the one returned by
end(), you know that all elements have been accessed. For example, here is a loop that
cycles through all elements in a sequence container called cont:

for(itr = cont.begin(); itr != cont.end(); ++itr) //

The loop runs until itr equals cont.end(). Thus, all elements in cont will have been processed.

As explained, a reversible container is one in which the elements can be traversed in
reverse order (back to front). All of the built-in sequence containers are reversible. For a
reversible container, you can obtain a reverse iterator to the end of the sequence by calling
rbegin(). An iterator to one before the first element in the sequence is obtained by calling
rend(). These functions are shown here:

reverse_iterator rbegin()

reverse_iterator rend()

There are also const versions of these functions. A reverse iterator is declared just like a regular
iterator. For example,

vector<doubles>: :reverse iterator ritr;

You can use a reverse iterator to cycle through a vector in reverse order. For example,
given a reverse iterator called ritr, here is a loop that cycles through all elements in a
reversible sequence container called cont from back to front:

for(ritr = cont.rbegin(); ritr != cont.rend(); ++ritr) //

The reverse iterator ritr starts at the element pointed to by rbegin(), which is the last
element in the sequence. It runs until it equals rend(), which points to an element that is
one before the start of the sequence. (It is sometimes helpful to think of rbegin() and rend()
returning iterators to the start and end of a reversed sequence.) Each time a reverse iterator
is incremented, it points to the previous element. Each time it is decremented, it points to
the next element.

The contents of two sequence containers can be exchanged by calling swap(). Here is
the way that it is defined for vector:

void swap(vector<T, Allocator> &ob)
The contents of the invoking container are exchanged with those specified by ob.
Example
The following example demonstrates the basic sequence container operations:
// Demonstrate the basic sequence container operations.
//

// This example uses vector, but the same techniques can be
// applied to any sequence container.

106 Herb Schildt's C++ Programming Cookbook

#include <iostream>
#include <vectors>

using namespace std;
void show(const char *msg, vector<chars> vect) ;

int main() {
// Declare an empty vector that can hold char objects.
vector<char> v;

// Declare an iterator to a vector<chars>.
vector<char>::iterator itr;

// Obtain an iterator to the start of v.
itr = v.begin() ;

// Insert characters into v. An iterator to the inserted
// object is returned.

itr = v.insert (itr, 'A');

itr = v.insert (itr, 'B');

v.insert (itr, 'C');

// Display the contents of v.
show ("The contents of v: ", Vv);

// Declare a reverse iterator.
vector<chars>::reverse iterator ritr;

// Use a reverse iterator to show the contents of v in reverse.
cout << "Here 1s v 1in reverse: ";
for (ritr = v.rbegin(); ritr != v.rend(); ++ritr)
cout << *ritr << " ";
cout << "\n\n";

// Create another vector that is the same as the first.
vector<chars> v2(v) ;

show ("The contents of v2: ",v2);

cout << "\n";

// Show the size of v, which is the number of elements
// currently held by v.
cout << "Size of v is " << v.size() << "\n\n";

// Compare two containers.
if (v == v2) cout << "v and v2 are equivalent.\n\n";

// Insert more characters into v and v2. This time,
// insert them at the end.
cout << "Insert more characters into v and v2.\n";

v.insert(v.end(), 'D');
v.insert(v.end (), 'E');
v2.insert (v2.end (), 'X');

show ("The contents of v: ", Vv);

Chapter 3: Working with STL Containers 107

show ("The contents of v2: ", v2);
cout << "\n";

// Determine if v is less than v2. This is a

// lexicographical compare. Therefore, the first
// non-matching element determines which

// container is less than another.

if (v < v2) cout << "v is less than v2.\n\n";

// Now, insert Z at the start of v.

cout << "Insert Z at the start of v.\n";
v.insert (v.begin(), 'Z'");

show ("The contents of v: ", v);

cout << "\n";

// Now, compare v to v2 again.
if (v > v2) cout << "Now, Vv is greater than v2.\n\n";

// Remove the first element from v2.
v2.erase(v2.begin()) ;

show ("v2 after removing the first element: ", v2);
cout << "\n";

// Create another vector.
vector<char> v3;
v3.insert(v3.end(), 'X'");
v3.insert (v3.end (), 'Y');
v3.insert(v3.end(), 'Z'");
show ("The contents of v3: ", v3);
cout << "\n";

// Exchange the contents of v and v3.
cout << "Exchange v and v3.\n";
v.swap (v3) ;

show ("The contents of v: ", v);

show ("The contents of v3: ", v3);
cout << "\n";

// Clear v.
v.clear();
if (v.empty()) cout << "v is now empty.";

return O;

}

// Display the contents of a vector<char> by using

// an iterator.

void show(const char *msg, vector<char> vect) {
vector<chars>::iterator itr;

cout << msg;

for (itr=vect.begin(); itr != vect.end(); ++itr)
cout << *itr << " ";

cout << "\n";

108

Herb Schildt's C++ Programming Cookbook

The output is shown here:

The contents of v: C B A
Here is v in reverse: A B C

The contents of v2: C B A

Size of v is 3

v and v2 are equivalent.

Insert more characters into v and v2.
The contents of v: C B ADE

The contents of v2: C B A X

v is less than v2.

Insert Z at the start of v.
The contents of v: Z C B ADE

Now, v 1is greater than v2.
v2 after removing the first element: B A X
The contents of v3: X Y Z

Exchange v and v3.
The contents of v: X Y Z
The contents of v3: Z C B ADE

v is now empty.

Although much of the program is self-explanatory, there are several points of interest that
warrant closer examination. First, notice that no allocator is specified when the containers in
the program (v, v2, and v3) are declared. As explained, for most uses of the STL, the default
allocator is the right choice.

Next, notice how the iterator itr is declared by this statement:

vector<chars>::iterator itr;

This declares an iterator that can be used with objects of type vector<char>. Each container
class creates a typedef for iterator. Iterators to other types of vectors or other containers are
declared in the same general way. For example,

vector<doubles>::iterator itra;
deque<string>::iterator itrB;

Here, itrA is an iterator that can be used on vector<double> containers, and itrB applies to
containers of type deque<string>. In general, you must declare an iterator in a way that
matches both the type of the container and the type of objects contained in the container.
The same goes for reverse iterators.

Chapter 3: Working with STL Containers

Next, an iterator to the start of the container is obtained by calling begin(), and then the
following set of calls to insert() puts elements into v:

itr = v.insert (itr, 'A');
itr = v.insert (itr, 'B');
v.insert (itr, 'C');

Each call inserts the value immediately before the element pointed to by the iterator passed
in itr. An iterator to the inserted item is returned. Thus, these three calls cause v to contain
the sequence CBA.

Now, look at the show() function. It is used to display the contents of a vector<char>.
Pay special attention to the following loop:

for (itr=vect.begin(); itr != vect.end(); ++itr)
cout << *itr << " ";

It cycles through the vector passed to vect, beginning with the first element and stopping
when the last element has been encountered. Remember, end() returns an iterator that
points one element past the end of the container. Therefore, when itr equals vect.end(), the
end of the container has been reached. These types of loops are extremely common when
working with the STL. Also, notice how itr is dereferenced via the * operator in just the
same way you would dereference a pointer. In general, iterators work like pointers and are
handled in essentially the same way.

Next, in main(), notice how the reverse iterator ritr is used to cycle through the contents
of v in reverse order. A reverse iterator works just like a normal iterator, except that it
accesses the elements of the container in reverse order.

Now, notice how two containers are compared by use of the == and < operators. For
sequence containers, comparisons are conducted using a lexicographical comparison of the
elements. Although the term "lexicographical” literally means "dictionary order," its meaning
is generalized as it relates to the STL. For container comparisons, two containers are equal if
they contain the same number of elements, in the same order, and all corresponding elements
are equal. Otherwise, the result of a lexicographical comparison is based on the first non-
matching elements. For example, given these two sequences:

seql:7,8,9

seq2:7,8,11
seql is less than seq2 because the first mismatch is 9 and 11, and 9 is less than 11. Because
the comparison is lexicographical, seq1 is still less than seq2, even if the length of seql is

increased to 7, 8,9, 10, 11, 12. The first non-matching elements (in this case, 9 and 11) determine
the outcome.

Options and Alternatives

In addition to the version of insert() used in this recipe, all sequence containers support the
two forms shown here:

void insert(iterator i, size_type num, const T &uval)

template <class Inlter> void insert(iterator i, Inlter start, Inlter end)

109

110 Herb Schildt's C++ Programming Cookbook

The first form inserts num copies of val immediately before the element specified by i. The
second form inserts the sequence that runs from start to end—1 immediately before the element
specified by i. Notice that start and end do not need to point into the invoking container.
Thus, this form can be used to insert elements from one container into another.
Furthermore, the containers do not need to be of the same kind. As long as the elements are
compatible, you can insert elements from a deque into a list, for example.

There is a second form of erase() that is supported by all sequence containers. It is
shown here:

iterator erase(iterator start, iterator end)

This version removes elements in the range start to end—1 and returns an iterator to the
element after the last element removed.

In addition to the ==, <, and > operators, all sequence containers support the <=, >=,
and !=logical operators.

You can find the maximum number of elements that a container can hold by calling
max_size(), shown here:

size_type max_size() const

Understand that the maximum size will vary, depending on the type of data the container
holds. Also, different types of containers may (probably will) have differing maximum
capacities.

As mentioned, the preceding example works for all sequence containers. To prove
this, try substituting list or deque for vector. As you will see, the program produces the
same output as before. Of course, choosing the right container is an important part of
using the STL successfully. Remember, different containers have different performance
guarantees. For example, inserting an element into the middle of a deque takes linear
time. Inserting into a list takes constant time. Inserting into the middle of a vector uses
linear time, but inserting on the end can occur in constant time (if no reallocation is
required). In general, if there is no compelling reason to choose one container over
another, the vector is usually the best choice because it implements what is, in essence,
a dynamic array (see Use vector).

In some cases, you will want to use one of the sequence container adaptors, such as
queue, stack, or priority_queue, that provides a specific functionality that you desire. For
example, if you want a container that implements a classic stack, then use stack. For a
single-ended queue, use queue. For a queue that is ordered according to priority, use
priority_queue.

Chapter 3: Working with STL Containers

Key Ingredients

Headers Classes Functions

<vector> vector template <class Inlter>
void assign(Inlter start, Inlter end)

reference at(size_type i)

reference back()

size_type capacity() const

reference front()

reference operator|](size_type i)

void pop_back()

void push_back(const T &val)

void reserve(size_type num)

void resize(size_type num, T val =T())

This recipe demonstrates vector, which is probably the most widely used sequence container
because it implements a dynamic array. Unlike a static array, whose dimensions are fixed at
compile time, a dynamic array can grow as needed during program execution. This makes
vector an excellent choice for situations in which you need an array but don't know in
advance how large it needs to be. Even though the array created by vector is dynamic, its
elements can still be accessed using the normal array-subscripting operator []. This makes
it easy to drop vector into situations that would otherwise require an array.

NOTE The focus of this recipe is on the attributes and features of vector that make it unique. See
Basic Sequence Container Techniques for information that applies to all sequence containers.

Step-by-Step

Using vector involves the following steps:

. Create a vector instance of the desired type and initial size.

. Assign or obtain values to elements via the subscripting operator.

. Use the at() function as an alternative to the subscripting operator.
Add elements to the vector using either insert() or push_back().

. Remove elements from the end by calling pop_back().

o Ul A W R

. Obtain a reference to the first element in the vector by calling front().

112 Herb Schildt's C++ Programming Cookbook

7. Obtain a reference to the last element in the vector by calling back().
8. Assign a range of elements to a vector by calling assign().

9. To obtain the current capacity of a vector, call capacity(). To specify a capacity, call
reserve().

10. To change the size of a vector, call resize().

Discussion
The template specification for vector is shown here:

template <class T, class Allocator = allocator<T> > class vector

Here, T is the type of data being stored and Allocator specifies the allocator, which defaults
to the standard allocator. To use vector, you must include the <vector> header.
Here are vector's constructors:

explicit vector(const Allocator &alloc = Allocator())

explicit vector(size_type num, const T &val =T (),
const Allocator &alloc = Allocator())

vector(const vector<T, Allocator> &ob)

template <class Inlter> vector(Inlter start, Inlter end,
const Allocator &alloc = Allocator())

The first form constructs an empty vector. The second form constructs a vector that has num
elements with the value val. The third form is vector's copy constructor. The fourth form
constructs a vector that contains the elements in the range start to end-1. The allocator used
by the vector is specified by alloc, which is typically allowed to default.

The vector class supports random-access iterators, and the [] is overloaded. This allows
a vector object to be indexed like an array.

The vector class implements all required sequence container functions and operations,
such as erase(), insert(), swap(), and the logical operators. It also provides all functions
required for a reversible container. It supplies most of the optional sequence container
functions. The only optional functions that it does not implement are push_front() and
pop_front().

The elements within a vector can be accessed in two ways. First, and most convenient, is
through the use of the [] subscripting operator. It is shown here:

reference operator[J(size_type i)

It returns a reference to the element at the index specified by i. The reference type is a typedef
for T &. (A const version of the function is also supplied that returns a const_reference.) This
operator can be used to set or get the value at a specified index. Of course, the index you
specify must be within the current range of the vector. Like arrays, indexing begins at zero.
Another way to access the elements in a vector is to use the at() method. It is shown here:

reference at(size_type i)

It returns a reference to the element at the index specified by i. (A const version of the function
is also supplied that returns a const_reference.) This reference can be used to set or get the

Chapter 3: Working with STL Containers

value at a specified index. Of course, the index you specify must be within the current range
of the vector. Like the [] operator, indexing using at() also begins at zero.

Although the [] operator is more convenient to use, the at() function does offer one
benefit. If an attempt is made to access an element that is outside the current bounds of the
vector, at() will throw an out_of_range exception. Thus, it provides bounds checking. The
[1does not.

Although all vectors have an initial size (which can be zero), it is possible to increase that
size by adding elements to the vector. There are two easy ways to do this: insert elements
using the insert() function and add elements to the end by calling push_back(). The insert()
function is described in Basic Sequence Container Techniques and is not described further here.
The push_back() function is shown here:

void push_back(const T &wval)

It adds an element with the value specified by val to the end of the vector. The vector is
automatically increased in size to accommodate the addition.

The complement to push_back() is pop_back(). It removes an element from the end of
the vector. It is shown here:

void pop_back()

After pop_back() executes, the size of the vector is reduced by one.
You can obtain a reference to the last element in the vector by calling back(). A reference
to the first element is returned by front(). These functions are shown here:

reference back()

reference front()

The vector class also supplies const versions of these functions.

The iterator type provided by vector is random-access. This means that an integer value
can be added to or subtracted from an iterator, enabling the iterator to point to any arbitrary
element within the container. It also allows an iterator to traverse a vector in either the forward
or reverse direction. The vector class defines two iterator types: forward and reverse iterators.
Forward iterators are objects of type iterator or const_iterator. Reverse iterators are of type
reverse_iterator or const_reverse_iterator.

A forward iterator to the start of a vector is obtained by calling begin(), and an iterator
to the end of the vector is obtained by calling end(). A reverse iterator to the end of the
vector is obtained by calling rbegin(). A reverse iterator to one before the start of a vector is
obtained by calling rend(). These functions and the basic procedure required to cycle
through a sequence container are described in Basic Sequence Container Techniques.

You can assign a new set of values to a vector by using the assign() function. It has two
forms. The one used by this recipe is shown here:

template <class Inlter> void assign(Inlter start, Inlter end)

It replaces the entire contents of the invoking vector with the values specified in the range
start to end-1. Notice that start and end can be any type of input iterator. This means that you
can use assign() to assign values from another vector or any other type of container. The
only rule is that the values must be compatible with the invoking object.

13

114

Herb Schildt's C++ Programming Cookbook

All vectors are created with an initial capacity. This is the number of elements that the
vector can hold before more memory needs to be allocated. You can obtain the current
capacity by calling capacity(), shown here:

size_type capacity() const

It is important not to confuse capacity with size. The size of a vector, which is available by
calling the standard container function size(), is the number of elements that it currently
holds. Capacity is how many it can hold before a reallocation must occur.

You can reserve memory for a specific number of elements by calling reserve(), shown
here:

void reserve(size_type num)

The reserve() function reserves memory for at least the number of elements specified by
num. In other words, its sets the capacity of the invoking vector equal to or greater than num.
(Thus, a compiler is free to adjust the capacity upward in the interest of efficiency.) Since
increasing the capacity may cause a memory reallocation, it might invalidate any pointers or
references to elements within the vector. If you know in advance that a vector will be holding
a specific number of elements, then using reserve() will prevent unnecessary reallocations,
which are costly in terms of time.

You can change the size of a vector by calling resize(), shown here:

void resize(size_type num, T val = T())

It sets the size of the vector to that specified by num. If the size of the vector is increased,
then elements with the value specified by val are added to the end. Notice that val defaults
to the default value of the T. If the vector is decreased in size, then elements are removed
from the end.

The vector class has the following performance characteristics. Inserting or deleting
elements at the end of a vector takes place in amortized constant time. When occurring at
the beginning or in the middle, insertions or deletions take place in linear time. As just
explained, it is possible to reserve additional space in a vector by using the reserve()
function. By pre-allocating extra memory, you will prevent reallocations from occurring.
Thus, if you manage your vectors correctly, most insertions can occur in constant time.

Access of an element via the subscripting operator takes place in constant time. In
general, element access in a vector is faster than it is with any other sequence containers
defined by the STL. This is why vector is used for dynamic arrays.

In all cases, when an insertion occurs, references and iterators to elements after the point
of the insertion will be invalid. However, in some cases, including those in which the element
is added to the end via a call to push_back(), all references and iterators to elements may be
invalid. This situation occurs only if the vector needs to allocate more memory. In this case, a
reallocation occurs, and the contents of the vector may have to be moved to a new location. If
the vector is physically moved, previous iterators and references are no longer valid. Thus,
for all practical purposes, it is best to assume that iterators and references are not valid after
insertions. When an element is deleted from a vector, iterators and references to elements
that are after the point of the erasure are invalid.

Chapter 3: Working with STL Containers 115

Example

The following example shows vector in action:
// Demonstrate vector.

#include <iostream>
#include <vector>

using namespace std;
void show(const char *msg, vector<ints> vect) ;
int main() {

// Declare a vector that has an initial capacity of 10.
vector<int> v (10) ;

// Assign its elements some values. Notice how this is
// done using the standard array-subscripting syntax.
// Notice that the number of elements in the vector is
// obtained by calling size().

for (unsigned i=0; 1 < v.size(); ++1i) v[i] = i*i;

show ("Contents of v: ", v);

// Compute the average of the values. Again, notice

// the use of the subscripting operator.

int sum = 0;

for (unsigned i=0; i < v.size(); ++1i) sum += vI[i];

double avg = sum / v.size();

cout << "The average of the elements is " << avg << "\n\n";

// Add elements to the end of v.
v.push back (100) ;
v.push back(121) ;

show ("v after pushing elements onto the end: ", v);
cout << endl;

// Now use pop back() to remove one element.
v.pop_ back () ;

show ("v after back-popping one element: ", v);
cout << endl;

cout << "The first and last element in v as"
<< " pointed to by begin() and end()-1:\n"
<< *v.begin() << ", " << *(v.end()-1) << "\n\n";

cout << "The first and last element in v as"
<< " pointed to by rbegin() and rend()-1:\n"
<< *v.rbegin() << ", " << *(v.rend()-1) << "\n\n";

// Declare an iterator to a vector<ints.
vector<int>::iterator itr;

116 Herb Schildt's C++ Programming Cookbook

// Now, declare reverse iterator to a vector<ints>
vector<ints>::reverse iterator ritr;

// Cycle through v in the forward direction using an iterator.
cout << "Cycle through the vector in the forward direction:\n";
for (itr = v.begin(); itr != v.end(); ++itr)
cout << *itr << " ";
cout << "\n\n";
cout << "Now, use a reverse iterator to cycle through in the"
<< " reverse direction:\n";

// Cycle through v in the reverse direction using a reverse iterator.
for (ritr = v.rbegin(); ritr != v.rend(); ++ritr)

cout << *ritr << " ";
cout << "\n\n";

// Create another vector that contains a subrange of v.
vector<int> v2 (v.begin()+2, v.end()-4);

// Display the contents of v2 by using an iterator.
show ("v2 contains a subrange of v: ", v2);

cout << endl;

// Change the values of some of v2's elements.

v2[1] = 100;

v2[2] = 88;

v2[4] = 99;

show ("After the assignments, v2 now contains: ", v2);

cout << endl;

// Create an empty vector and then assign it a sequence
// that is the reverse of v.

vector<int> v3;

v3.assign(v.rbegin(), v.rend());

show ("v3 contains the reverse of v: ", v3);

cout << endl;

// Show the size and capacity of v.
cout << "Size of v is " << v.size() << ". The capacity is "
<< v.capacity () << ".\n";

// Now, resize v.
v.resize (20) ;

cout << "After calling resize(20), the size of v is "
<< v.size() << " and the capacity is "
<< v.capacity () << ".\n";

// Now, reserve space for 50 elements.
v.reserve (50) ;

cout << "After calling reserve(50), the size of v is "
<< v.size() << " and the capacity is "
<< v.capacity() << ".\n";

return O;

Chapter 3: Working with STL Containers 117

// Display the contents of a vector<ints.
void show (const char *msg, vector<ints> vect) {
cout << msg;
for (unsigned i=0; 1 < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}

The output is shown here:

Contents of v: 0 1 4 9 16 25 36 49 64 81
The average of the elements is 28

v after pushing elements onto the end: 0 1 4 9 16 25 36 49 64 81 100 121
v after back-popping one element: 0 1 4 9 16 25 36 49 64 81 100

The first and last element in v as pointed to by begin() and end()-1:
0, 100

The first and last element in v as pointed to by rbegin() and rend()-1:
100, O

Cycle through the vector in the forward direction:
01 4 9 16 25 36 49 64 81 100

Now, use a reverse iterator to cycle through in the reverse direction:
100 81 64 49 36 25 16 9 4 1 0

v2 contains a subrange of v: 4 9 16 25 36
After the assignments, v2 now contains: 4 100 88 25 99
v3 contains the reverse of v: 100 81 64 49 36 25 16 9 4 1 0

Size of v is 11. The capacity is 15.
After calling resize(20), the size of v is 20 and the capacity is 22.
After calling reserve(50), the size of v is 20 and the capacity is 50.

Most of the program is self-explanatory, but a couple of points merit further discussion.
First, notice that the subscripting operator is used to assign a value to an element of a vector
or to obtain the current value of an element. Thus, it works in the same way that it does when
applied to an array. A key point to understand is that you can only use subscripting to access
an existent element. For example, in the program, v initially has 10 elements. Therefore, you
cannot assign a value to v[15], for example. If you need to expand a vector after it is created,
you should use either the push_back() method, which adds a value to the end, or the insert()
method, which can be used to insert one or more elements anywhere in the sequence.

Secondly, notice that reverse iterators are used in two places: first, to cycle through a
vector in the reverse direction, and second, in the call to assign() to assign v3 a sequence that
is the reverse of the one that is in v. It is this second use that is of most interest. By using a
reverse iterator, it is possible to obtain a reversed sequence in one step, rather than the two
steps that would be required if the sequence were first copied as-is and then reversed. Reverse
iterators can often streamline operations that would otherwise be somewhat cumbersome.

118

”~

Use deque

Herb Schildt's C++ Programming Cookbook

Options and Alternatives
There is another form of assign() that lets you assign a value to a vector. It is shown here:

void assign(size_type num, const T& val)

This version removes any elements previously held by the vector and then assigns num
copies of val to the vector. This version of assign() is useful when you want to re-initialize
a vector to a known value, for example.

The vector container does not store elements in sorted order. However, it is possible to
sort a vector by using the sort() algorithm. See Sort a Container in Chapter 4.

In some cases, the deque container is a good alternative to vector. It has similar
capabilities, such as allowing its elements to be accessed via the subscripting operator, but it
has different performance characteristics. See Use deque for details.

The STL also contains a specialization of vector for bool values: vector<bool>. It
includes all of the functionality of vector and adds these two members:

void flip() Reverses all bits in the vector.

static void swap(reference i, reference j) Exchanges the bits specified by i and j.

By specializing for bool, vector can pack true/false values into individual bits. The
vector<bool> specialization defines a class called reference, which is used to emulate
a reference to a bit.

Key Ingredients

Headers Classes Functions

<deque> deque template <class Inlter>
void assign(Inlter start, Inlter end)

reference at(size_type i)

reference back()

reference front()

reference operator[J(size_type i)

void pop_back()

void pop_front()

void push_back(const T &val)

void push_front(const T &val)

void resize(size_type num, T val = T())

Chapter 3: Working with STL Containers

Perhaps the second most commonly used container is deque. There are two reasons for this.
First, deque supports all of the optional functions defined for sequence containers. This
makes it the STL's most full-featured sequence container. Second, deque is the default
container that underlies the queue and stack container adaptors. (The default container
used by priority_queue is vector). This recipe shows how to put deque into action.

NOTE The focus of this recipe is on the attributes and features of deque that make it unique. See
Basic Sequence Container Techniques for information that applies to all sequence containers.

Step-by-Step

To use a deque involves these steps:

. Create a deque instance of the desired type and initial size.
. Assign or obtain values to elements via the subscripting operator.
. Use the at() function as an alternative to the subscripting operator.

Add elements to the deque using either insert(), push_back(), or push_front().

Uk W N =

. Remove elements from the end by calling pop_back(). Remove elements from the
front by calling pop_front().

. Obtain a reference to the first element in the deque by calling front().
. Obtain a reference to the last element in the deque by calling back().

. Assign a range of elements to a deque by calling assign().

O 0 N O

. To change the size of a deque, call resize().

Discussion
The template specification for deque is:

template <class T, class Allocator = allocator<T> > class deque

Here, T is the type of data stored in the deque and Allocator specifies the allocator, which
defaults to the standard allocator. To use deque, you must include the <deque> header.
Here are deque's constructors:

explicit deque(const Allocator &alloc = Allocator())

explicit deque(size_type num, const T &val =T (),
const Allocator &alloc = Allocator())

deque(const deque<T, Allocator> &ob)

template <class Inlter> deque(Inlter start, Inlter end,
const Allocator &alloc = Allocator())

The first form constructs an empty deque. The second form constructs a deque that has num
elements with the value val. The third form constructs a deque that contains the same
elements as ob. This is deque’s copy constructor. The fourth form constructs a deque that
contains the elements in the range start to end—1. The allocator used by the deque is specified
by alloc and is typically allowed to default.

19

120

Herb Schildt's C++ Programming Cookbook

The deque container supports random-access iterators, and the [] is overloaded. This
means that a deque object can be indexed like an array. It also means that a deque can be
traversed in both the forward and reverse directions by use of an iterator.

The deque container provides all required sequence container functions, including
those for a reversible container, and all optional sequence container functions. This makes
deque the most general-purpose container.

Although deque and vector have different performance characteristics, they offer nearly
identical functionality. For example, the standard sequence functions implemented by
deque, such as insert(), erase(), begin(), end(), rbegin(), rend(), operator[1(), front(),
back(), push_back(), and so on, work in deque just like they work in vector. The resize()
function provided by deque also works like the one provided by vector. Because a detailed
discussion of these standard methods is presented in Use vector, those discussions are not
duplicated here. (Note, however, that deque does not support the capacity() and reserve()
methods defined for vector. They are not needed by deque.)

The deque class does support two functions not provided by vector: push_front() and
pop_front(). They are shown here:

void push_front(const T &uval)
void pop_front()

The push_front() function adds an element with the value specified by val to the start of the
container. The container is automatically increased in size to accommodate the addition.
The pop_front() function removes an element from the start of the container.

The deque class has the following performance characteristics. Pushing or popping
elements from either end of a deque takes place in constant time. When occurring in the
middle, insertions or erasures of elements take place in linear time. Access of an element via
the subscripting operator takes place in constant time. Since adding or deleting elements
from the ends of a deque are quite efficient, deques make an excellent choice when these
types of operations will occur frequently. The ability to make efficient additions to the start
of the deque is one of the principal differences between vector and deque.

An insertion into the middle of a deque container invalidates all iterators and references
to the contents of that container. Because deque is typically implemented as a double-ended
dynamic array, an insertion implies that existing elements will be "spread apart” to
accommodate the new elements. Thus, if an iterator is pointing to an element prior to an
insertion, there is no guarantee that it will be pointing to the same element after the
insertion. The same applies to references.

An insertion at the head or the tail of a deque invalidates iterators, but not references.
An erasure to the middle invalidates both iterators and references. An erasure limited to
either end invalidates only those iterators and references that point to the elements that are
being erased.

Example

The following example shows deque in action. For comparison purposes, it reworks the
example used for vector, substituting deque for vector throughout. Because vector and deque
are very similar in the features that each provides, most of the two programs are the same. Of
course, the calls to capacity() and reserve() that are in the vector version have been removed
because these functions are not supported by deque. Also, the functions push_front() and

Chapter 3:

Working with STL Containers 121

pop_front() have been added. As explained, these functions are provided by deque but

not vector.
// Demonstrate deque.

#include <iostream>
#include <deque>

using namespace std;
void show(const char *msg, deque<ints> q);
int main() {

// Declare a deque
deque<int> dqg(10) ;

that has an initial capacity of 10.

// Assign its elements some values. Notice how this is
// done using the standard array-subscripting syntax.

// Notice that the number of elements in the
// obtained by calling size().
for (unsigned i=0; i < dg.size();

++1) dglil

show ("Contents of dg: ", dq);

// Compute the average of the values. Again,
// the use of the subscripting operator.

int sum = 0;

for (unsigned i=0; i < dg.size();
double avg = sum / dg.size();
cout << "The average of the elements is "

++1) sum +=

<<
// Add elements to the end of dq.

dg.push_back (100) ;
dg.push_back (121) ;

show ("dg after pushing elements onto the end:

cout << endl;

// Now use pop back() to remove one element.
dg.pop_back () ;

show ("dg after back-popping one element: ",
cout << endl;

deque is

i*i;

notice

dglil;

n \1’1\1’1" ;

avg <<

", dq);

dq) ;

cout << "The first and last element in dg as"

<< " pointed to by begin() and end()-1:\n"

<< *dg.begin() << ", " << *(dg.end()-1) << "\n\n";
cout << "The first and last element in dg as"

<< " pointed to by rbegin() and rend()-1:\n"

<< *dg.rbegin() << ", " << *(dg.rend()-1) << "\n\n";

// Declare an iterator to a deque<ints.

122 Herb Schildt's C++ Programming Cookbook

deque<int>::iterator itr;
// Now, declare reverse iterator to a deque<ints>
deque<int>::reverse_ iterator ritr;

// Cycle through dg in the forward direction using an iterator.
cout << "Cycle through the deque in the forward direction:\n";
for(itr = dg.begin(); itr != dg.end(); ++itr)
cout << *itr << " ";
cout << "\n\n";
cout << "Now, use a reverse iterator to cycle through in the"
<< " reverse direction:\n";

// Cycle through dg in the reverse direction using a reverse iterator.
for(ritr = dg.rbegin(); ritr != dg.rend(); ++ritr)

cout << *ritr << " ";
cout << "\n\n";

// Create another deque that contains a subrange of dqg.
deque<int> dg2 (dg.begin()+2, dg.end()-4);

// Display the contents of dg2 by using an iterator.
show ("dg2 contains a subrange of dg: ", dg2);
cout << endl;

// Change the values of some of dg2's elements.
dg2[1] = 100;

dg2[2] = 88;
dg2[4] = 99;
show ("After the assignments, dg2 now contains: ", dg2);

cout << endl;

// Create an empty deque and then assign it a sequence
// that is the reverse of dq.

deque<int> dqg3;

dg3.assign(dg.rbegin(), dg.rend()) ;

show ("dg3 contains the reverse of dg: ", dg3);

cout << endl;

// Push an element onto the front of dg.
dg.push_front (-31416) ;

show("dg after call to push front(): ", dq);
cout <<endl;

// Now, clear dg by popping elements one at a time.
cout << "Front popping elements from dg.\n";
while(dg.size() > 0) {
cout << "Popping: " << dg.front () << endl;
dg.pop_front () ;

if (dg.empty()) cout << "dg is now empty.\n";

return O;

Chapter 3: Working with STL Containers 123

// Display the contents of a deque<ints.
void show (const char *msg, deque<int> q)
cout << msg;
for (unsigned i=0; i < g.size(); ++1)
cout << g[i] << " ";
cout << "\n";

}

The output is shown here:

Contents of dg: 0 1 4 9 16 25 36 49 64 81
The average of the elements is 28

dg after pushing elements onto the end: 0 1 4 9 16 25 36 49 64 81 100 121
dg after back-popping one element: 0 1 4 9 16 25 36 49 64 81 100

The first and last element in dg as pointed to by begin() and end()-1:
0, 100

The first and last element in dg as pointed to by rbegin() and rend()-1:
100, O

Cycle through the deque in the forward direction:
01 4 9 16 25 36 49 64 81 100

Now, use a reverse iterator to cycle through in the reverse direction:
100 81 64 49 36 25 16 9 4 1 0

dg2 contains a subrange of dg: 4 9 16 25 36

After the assignments, dg2 now contains: 4 100 88 25 99

dg3 contains the reverse of dg: 100 81 64 49 36 25 16 9 4 1 0

dg after call to push front(): -31416 0 1 4 9 16 25 36 49 64 81 100

Front popping elements from dg.
Popping: -31416

Popping: 0
Popping: 1
Popping: 4
Popping: 9

Popping: 16
Popping: 25
Popping: 36
Popping: 49
Popping: 64
Popping: 81
Popping: 100

dg is now empty.

124

Herb Schildt's C++ Programming Cookbook

Options and Alternatives
Although the functions push_front() and pop_front() enable you to use deque as a first-in,
last-out stack, the STL offers a better approach. The container adaptor stack provides a stack
implementation that implements the FILO stack and provides the classic push() and pop()
functions. Along the same lines, although you could use a deque to create a first-in, first-out
queue by using the push_front() and pop_back() functions, the queue container adaptor is
a better choice. By default, both stack and queue use a deque container to hold the
elements. (See Use the Sequence Container Adaptors: stack, queue, and priority_queue.)

Like vector, deque also offers another form of assign() that lets you assign a value to
a deque. It is shown here:

void assign(size_type num, const T& val)

This version removes any elements previously held by the container and then assigns num
copies of val to it. You might use this version of assign() to reinitialize a deque to a known
value, for example.

Like vector, deque does not store elements in sorted order. However, it is possible to sort
a deque by using the sort() algorithm. See Sort a Container in Chapter 4.

As explained, vector and deque are very similar. For some uses, such as when few
insertions (especially insertions into the middle) are needed, a vector will be more efficient
than a deque and makes a better choice. (See Use vector for details.)

Key Ingredients

Headers Classes Functions

<list> list void merge(list<T, Allocator> &ob)
void push_back(const T &val)
reverse_iterator rbegin()
void remove(const T &val)
void reverse()
void sort()
void splice(iterator i, list<T, Allocator> &ob)
void unique()

The list class implements a bidirectional sequence container that is most often implemented
as a doubly linked list. Unlike the other two sequence containers vector and deque, which
support random access, list can be accessed only sequentially. However, since lists are
bidirectional, they can be accessed front to back or back to front. The list class offers the
same benefits associated with any doubly linked list: fast insertion and deletion times.

Chapter 3: Working with STL Containers

Of course, access to a specific element in the list is a slower operation. A list is particularly
useful when elements will be frequently added to or removed from the middle of the
container and random access to elements is not required. This recipe demonstrates the key
aspects of list.

NOTE The focus of this recipe is on the attributes and features of list that make it unique. See Basic
Sequence Container Techniques for information that applies to all sequence containers.

Step-by-Step
To use list involves the following steps:

1. Create a list instance of the desired type.

2. Add elements to the list by calling insert(), push_front(), or push_back().

@

. Delete an element at the end of the list by calling pop_back(). Delete an element
from the start of the list by calling pop_front().

. Sort a list by calling sort().

. Merge two ordered lists by calling merge().

. Join one list to another by calling splice().

. Delete a specific element or elements from the list by calling remove().

. Remove duplicate elements by calling unique().

O 0 N O U1

. Reverse the list by calling reverse().

Discussion
The template specification for list is:

template <class T, class Allocator = allocator<T> > class list

Here, T is the type of data being stored and Allocator specifies the allocator, which defaults
to the standard allocator. To use list, you must include the <list> header.
The list class has the following constructors:

explicit list(const Allocator &alloc = Allocator())

explicit list(size_type num, const T &val =T (),
const Allocator &alloc = Allocator())

list(const list<T, Allocator> &ob)

template <class Inlter> list(Inlter start, Inlter end,
const Allocator &alloc = Allocator())

The first form constructs an empty list. The second form constructs a list that has num
elements with the value val. The third form is list's copy constructor. The fourth form
constructs a list that contains the elements in the range start to end—1. The allocator used by
list is specified by alloc, which is typically allowed to default.

125

126

Herb Schildt's C++ Programming Cookbook

The list class supports bidirectional iterators. Thus, the container can be accessed
through an iterator in both the forward and reverse directions. However, random-access
operations are not supported. Thus, the at() function is not provided and the [] operator is
not overloaded.

In addition to the required sequence and reversible sequence container functions, list
implements the following optional ones: front(), back(), push_front(), push_back(),
pop_front(), and pop_back(). These functions are described in the overview and in Basic
Sequence Container Techniques. (Additional discussions are found in Use vector and Use
deque.) The only optional functions that it does not implement are at() and operator[1().

The list class adds several functions of its own, including merge(), reverse(), unique(),
remove(), remove_if(), and sort(). These functions duplicate the functionality provided by
the standard algorithms of the same names. They are defined by list because they have been
specially optimized for operation on objects of type list and offer a high-performance
alternative to the standard algorithms.

You can add elements to a list by using the standard sequence container functions insert(),
push_front(), and push_back(). You can remove elements from a list by calling the standard
sequence container functions erase(), clear(), pop_back(), and pop_front().

The list class supports both forward and reverse iterators. Like the other sequence
containers, these are objects of type iterator and reverse_iterator. The functions begin() and
end() return iterators to the beginning and the end of the list. The functions rbegin() and
rend() return reverse iterators to the end and one before the beginning, respectively. These
functions and the techniques required to use them to cycle through a container are described
in Basic Sequence Container Techniques.

The contents of a list are not automatically ordered. However, some operations, such as
merging, require an ordered list. To sort a list, call the sort() function. It has two versions.
The one used by this recipe is shown here:

void sort()

After a call to sort(), the list will be sorted in ascending order based on the natural ordering
of the elements. (The second version lets you specify a comparison function that will be
used to determine the ordering of the elements. See the Options and Alternatives section in
this recipe for details.)

A particularly powerful function implemented by list is merge(). It combines two ordered
lists, which must be sorted using the same criteria. During a merge, each element of the source
list is inserted into its proper location in the target list. Thus, the result is an ordered list that
contains all of the elements of the two original lists. The merge() function has two versions.
The one used by this recipe is shown here:

void merge(list<T, Allocator> &ob)

It merges the ordered list passed in ob with the ordered invoking list. The result is ordered.
After the merge, the list contained in ob is empty.

An operation related to merging is splicing, which is performed by the splice() function.
When a splice occurs, the source list is inserted as a unit into the target list. No element-by-
element integration of the two lists takes place, and there is no requirement that either list

Chapter 3: Working with STL Containers

be sorted. A splice is essentially just a "cut and paste" operation. There are three versions of
splice(). The one used by this recipe is shown here:

void splice(iterator i, list<T, Allocator> &ob)

The contents of ob are inserted into the invoking list at the location pointed to by i. After the

operation, ob is empty. A splice can take place at any point in the target sequence: at the front,

the middle, or the end. When a splice is at the front of a list, the spliced sequence is inserted

before begin(). When a splice occurs at the end, the spliced sequence is inserted before end().
You can remove a specific element from a list using remove(), shown here:

void remove(const T &uval)

It removes elements with the value val from the invoking list. If no element matches val,
then the list is unchanged. At first glance, remove() may seem redundant because list also
defines the erase() function. However, this is not the case. The difference lies in the fact that
erase() requires iterators to the element(s) to be deleted. The remove() function automatically
searches the list for the specified element.

Another way to remove elements from a list is through the use of the unique() function,
which deletes duplicate consecutive elements. It has two forms. The one used by this recipe
is shown here:

void unique()

It removes duplicate elements from the invoking list. Therefore, the resulting list contains
no consecutive duplicate elements. If the initial list is ordered, then after applying unique(),
each element will be unique.

To reverse a list, use the reverse() function, shown here:

void reverse()

It reverses the entire contents of the invoking list.

The list class has the following performance characteristics. Inserting or deleting elements
in a list takes place in constant time. It doesn't matter where in the list the insertion or deletion
will occur. Since list is usually implemented as a linked list, an insertion or deletion involves
only the rearrangement of the links and not a shifting of elements or the reallocation of
memory.

Unlike vector and deque, insertion into a list invalidates no iterators or references to
elements. A deletion invalidates only those iterators or references to the deleted elements.
The fact that these operations do not affect the validity of iterators or references to existing
elements makes the list class especially useful for those applications in which non-volatile
iterators and/or references are desired.

Example
The following example demonstrates list:

// Demonstrate list

#include <iostream>
#include <list>

127

128 Herb Schildt's C++ Programming Cookbook

using namespace std;
void show(const char *msg, list<chars> 1lst);
int main() {

// Declare two lists.
list<char> 1lstA;
list<char> 1stB;

// Use push back() to give the lists some elements.
lstA.push back('A')
lstA.push back('F');
lstA.push back('B')
lstA.push back('R')

7

7

7

1stB.push back('X"');
1stB.push back('A');
1stB.push back('F');

show ("Original contents of 1stA: ", 1lstA);
show ("Original contents of 1stB: ", 1stB);
cout << "Size of 1lstA is " << 1lstA.size() << endl;

cout << "Size of 1stB is "<< 1lstB.size() << endl;
cout << endl;

// Sort 1lstA and lstB

1stA.sort () ;
1stB.sort () ;
show ("Sorted contents of 1lstA: ", 1stA);
show ("Sorted contents of 1stB: ", 1stB);

cout << endl;

// Merge 1lstB into lstA.

lstA.merge (1stB) ;

show ("1lstA after merge: " , 1lstAd);

if (1stB.empty()) cout << "lstB is now empty () .\n";
cout << endl;

// Remove duplicates from lstA.
lstA.unique () ;

show ("1lstA after call to unique(): ", 1lstAd);
cout << endl;

// Give 1lstB some new elements.
1stB.push back('G');
1stB.push back('H');
1stB.push back('P');

show ("New contents of 1lstB: ", 1stB);
cout << endl;

Chapter 3:

// Now, splice 1lstB into 1stA.

list<char>::iterator itr = 1lstA.begin();

++itr;
lstA.splice(itr, 1stB);
show ("lstA after splice: ", 1stA);

cout << endl;

// Remove A and H.
lstA.remove ('A') ;
lstA.remove ('H') ;

show ("lstA after removing A and H:
cout << endl;

return 0;

}

// Display the contents of a list<chars.
void show(const char *msg, list<chars> 1lst)

list<char>::iterator itr;

cout << msg;

for(itr = lst.begin(); itr != lst.end();

cout << *itr << " ";

cout << "\n";

}
The output is shown here:

Original contents of 1lstA: A F
Original contents of 1stB: X A
Size of 1lstA is 4
Size of 1stB is 3

Sorted contents of 1lstA: A B F R
Sorted contents of 1lstB: A F X

lstA after merge: AAB F F R X
1stB is now empty ().

lstA after call to unique(): A B F R X

New contents of 1stB: G H P

lstA after splice: AGH P B F R X

lstA after removing A and H: G P B F R X

Working with STL Containers

1stAh) ;

{

++itr)

129

130

Herb Schildt's C++ Programming Cookbook

Options and Alternatives
The list container gives you detailed control over several of its operations because a number
of functions let you specify comparison functions or predicates that govern their outcomes.
They are described here.

When sorting a list instance, there is a second form of sort() that lets you specify a
comparison function that will be used to determine when one element is greater than
another. This version of sort() is shown here:

template <class Comp> void sort(Comp cmpfn)

Here, cmpfn specifies a pointer to a function that takes two arguments, which must be of the
same type as the elements of the invoking container. To sort in ascending order, the function
must return true when the first argument is less than the second argument. However, you
can specify any sorting criteria you want. For example, you can sort the list in reverse order
by reversing the comparison. Here is a reverse-comparison function that can be used to
reverse-sort the lists in the preceding program:

// A reverse comparison function.
bool revcomp (char a, char b) {
if(b < a) return true;
else return false;

}

Notice that the operands are reversed in the < operation. This causes the function to return
true if b is less than a, which causes the list to be sorted in descending order. (Normally, the
comparison a < b would be used, which would cause the sorted outcome to be in ascending
order.) Here is how to use this function to reverse-sort IstA:

1stA.sort (revcomp) ;

Another place that you can specify a comparison function when working with list is
with this version of the merge() function:

template <class Comp> void merge(<list<T, Allocator> &ob, Comp cmpfn)

In this version, the ordered list passed in ob is merged with the ordered invoking list based
on the ordering specified by the cmpfn function. After the merge, the list contained in ob is
empty. Normally, the same comparison function used to sort a list is also used to merge
lists. Of course, special uses in which this is not the case are possible.

As explained, you can remove a specific element by calling remove(). However, you
can also remove elements that satisfy a certain condition by using remove_if(), shown here:

template <class UnPred> void remove_if(UnPred pr)

This function removes elements for which the unary predicate pr is true. If no element
satisfies the predicate, then the list is unchanged. You might use remove_if() to remove all
elements from a list that satisfy some general condition. For example, assuming the preceding

Chapter 3: Working with STL Containers

program, you could use this predicate to remove all elements that are between A and G,
inclusive:

bool mypred(char ch)
if(ch <= 'G' && ch >= 'A') return true;
return false;

}
Therefore, to remove all letters A through G from 1stA, you would use this call to remove_if():

lstA.remove if (mypred) ;

The version of unique() used by the recipe removes adjacent duplicate elements. There
is a second form that lets you specify a binary predicate that defines what constitutes a
duplicate element. (In other words, the predicate determines when two elements are equal.)
This form of unique() is shown here:

template <class BinPred> void unique(BinPred pr)

This form uses pr to determine when one element is the same as another. This means that
you could use a criterion other than bitwise equality. For example, if a list is storing name
and contact information, then you might specify that two elements are the same if their e-mail
addresses match. Alternatively, you might specify a predicate that normalizes each element
before comparing. For example, assuming the preceding program, the following predicate
will return true if two elements are the same letter, independently of case differences.
Therefore, given the sequence, XxABcdEg, it will remove the duplicate X and E.

bool ign case pred(char a, char b) {
if (tolower (a) == tolower (b)) return true;
else return false;

}
To use ign_case_pred(), call unique() as shown here:
lstA.unique (ign_case pred) ;

As mentioned, list supports bidirectional iterators. This means that a list can be
traversed in either the forward or reverse direction. Therefore, assuming the preceding
example, the following fragment uses a reverse_iterator to display the contents of 1stA from
back to front:

list<char>::reverse iterator ritr;
for(ritr = lstA.rbegin(); ritr != lstA.rend(); ++ritr)
cout << *ritr << " ";

131

132 Herb Schildt's C++ Programming Cookbook

Use the Sequence Container Adaptors: stack, queue, and

priority_queue

Key Ingredients

Headers Classes Functions
<stack> stack bool empty() const
void pop()

void push(const value_type &val)
size_type size() const
value_type &top()

<queue> queue value_type &back()
bool empty() const
value_type &front()
void pop()
void push(const value_type &val)
size_type size() const

<queue> priority_queue bool empty() const
void pop()
void push(const value_type &val)
size_type size() const
const value_type &top() const

The STL provides three container adaptors, called stack, queue, and priority_queue. They
utilize one of the sequence containers as the underlying container, adapting it to their own
special purposes. In essence, a container adaptor is simply a tightly controlled interface to
another container. Although the container adaptors are built on one of the sequence containers,
they are, themselves, also containers and you use them much like you use the other containers.
It's just that access to their elements is restricted. This recipe demonstrates their use.

Before we begin, an important point needs to be made. The container adaptors do not
support all of the functionality of their underlying containers. The manipulations allowed
by an adaptor are a highly restricted subset of what the base container supports. While the
precise restrictions differ from adaptor to adaptor, there is one difference that is shared by
all: Iterators are not supported. If the adaptors supported iterators, then it would be a trivial
matter to circumvent the data structure defined by the adaptor (such as a stack) and access
its elements out of order.

Step-by-Step
To use the sequence container adaptors involves these steps:

1. Create an instance of the container adaptor, selecting the one suited to your
application.

Chapter 3: Working with STL Containers 133

2. Use the functions defined by the adaptor to insert, access, and remove elements
from the container. Each adaptor defines its own set of these functions. For example,
to push an element onto a stack, call push(). To obtain the next element from a
queue, call front().

Discussion

The stack class supports a last-in, first-out (LIFO) stack. Its template specification is shown
here:

template <class T, class Container = deque<T> > class stack

Here, T is the type of data being stored and Container is the type of container used to hold
the stack, which by default is deque.
The stack adaptor has the following constructor:

explicit stack(const Container &cnt = Container())

The stack() constructor creates an empty stack. To use a stack, include the <stack> header.
The underlying container is held in a protected object called ¢ of type Container.
In general, stack can adapt any container that supports the following operations:

back()
pop_back()
push_back()
Thus, you can also use a list or a vector as a container for a stack.

The stack class defines the functions shown here. Notice that elements in a stack can be
accessed only in last-in, first-out order. This enforces its stack-like nature.

Member Description

bool empty() const Returns true if the invoking stack is empty and
false otherwise.

void pop() Removes the top of the stack.

void push(const value_type &val) Pushes an element onto the stack.

size_type size() const Returns the number of elements currently in the
stack.

value_type &top() Returns a reference to the top of the stack.

cont value_type &top() const

The queue class supports a normal first-in, first-out (FIFO) queue. Elements are inserted
into a queue on one end and removed from the other. Elements cannot be accessed in any
other fashion. The queue template specification is shown here:

template <class T, class Container = deque<T> > class queue

134 Herb Schildt's C++ Programming Cookbook

Here, T is the type of data being stored and Container is the type of container used to hold
the queue, which by default is a deque. The underlying container is held in a protected
object called ¢ of type Container.

The queue adaptor has the following constructor:

explicit queue(const Container &cnt = Container())

The queue() constructor creates an empty queue. To use a queue, include the <queue>
header.
In general, queue can adapt any container that supports the following operations:

back()
front()
pop_front()
push_back()

Thus, you can also use list as a container for a queue. However, you cannot use vector
because vector does not provide the pop_front() function.

The queue adaptor defines the functions shown here. As you can see, they restrict
queue to providing only first-in, first-out access to its elements.

Member Description

value_type &back() Returns a reference to the last element in the queue.

const value_type &back() const

bool empty() const Returns true if the invoking queue is empty and false
otherwise.

value_type &front() Returns a reference to the first element in the queue.

const value_type &front() const

void pop() Removes the first element in the queue.

void push(const value_type &val) Adds an element with the value specified by val to the
end of the queue.

size_type size() const Returns the number of elements currently in the queue.

The priority_queue class supports a single-ended priority queue. A priority queue
arranges its contents in order of their priority. The priority_queue template specification is
shown here:

template <class T, class Container = vector<T>,
class Comp = less<typename Container::value_type> >
class priority_queue

Here, T is the type of data being stored. Container is the type of container used to hold the
priority queue, which by default is a vector. The underlying container is held in a protected
object called ¢ of type Container. Comp specifies the comparison function object that
determines when one member is lower in priority than another. This object is held in a
protected member called comp of type Compare.

Chapter 3: Working with STL Containers 135

The priority_queue adaptor has the following constructors:

explicit priority_queue(const Comp &cmpfn = Comp(),
Container &cnt = Container())

template <class Inlter> priority_queue(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
Container &cnt = Container())

The first priority_queue() constructor creates an empty priority queue. The second creates
a priority queue that contains the elements specified by the range start to end-1. To use
priority_queue, include the <queue> header.

In general, priority_queue can adapt any container that supports the following
operations:

front()
pop_back()
push_back()

The container must also support random-access iterators. Thus, you can also use a deque as
a container for a priority queue. However, you cannot use list because list does not support
random-access iterators.

The first priority_queue class defines the functions shown here. The elements in a
priority_queue can be accessed only in the order of their priority.

Member Description

bool empty() const Returns true if the invoking priority queue is empty
and false otherwise.

void pop() Removes the first element in the priority queue.

void push(const value_type &val) Adds an element to the priority queue.

size_type size() const Returns the number of elements currently in the

priority queue.

const value_type &top() const Returns a reference to the element with the
highest priority. The element is not removed.

Example

The following example shows all three container adaptors in action:
// Demonstrate the sequence container adaptors.

#include <iostream>

#include <strings>

#include <queue>

#include <stack>

using namespace std;

136 Herb Schildt's C++ Programming Cookbook

int main/()

{
// Demonstrate queue.
queue<string> q;

cout << "Demonstrate a queue for strings.\n";

cout << "Pushing one two three four\n";
g.push("one") ;

g.push("two") ;

g.push("three") ;

g.push("four") ;

cout << "Now, retrieve those values in FIFO order.\n";
while (!qg.empty()) {

cout << "Popping ";

cout << g.front() << "\n";

q.pop();

cout << endl;

// Demonstrate priority queue.
priority queue<ints> pg;

cout << "Demonstrate a priority queue for integers.\n";

cout << "Pushing 1, 3, 4, 2.\n";

cout << "Now, retrieve those values in priority order.\n";
while (!pg.empty()) {

cout << "Popping ";

cout << pg.top() << "\n";

pg.pop () ;

cout << endl;

// Finally, demonstrate stack.
stack<char> stck;

cout << "Demonstrate a stack for characters.\n";

cout << "Pushing A, B, C, and D.\n";
stck.push('A') ;

stck.push('B') ;

stck.push('C') ;
stck.push('D")

7

cout << "Now, retrieve those values in LIFO order.\n";
while (!stck.empty()) {

cout
cout
stck

}

return

}

Chapter 3: Working with STL Containers

<< "Popping: ";
<< stck.top() << "\n";
pop () ;

0;

The output is shown here:

Demonstrate a queue for strings.

Pushing one two three four

Now, retrieve those values in FIFO order.
one

Popping
Popping
Popping
Popping

t
t
£

wo
hree
our

Demonstrate a priority queue for integers.
Pushing 1, 3, 4, 2.
Now, retrieve those values in priority order.

Popping
Popping
Popping
Popping

4

3
2
1

Demonstrate a stack for characters.
Pushing A, B, C, and D.
Now, retrieve those values in LIFO order.

Popping:
Popping:
Popping:
Popping:

D

C
B
A

Bonus Example: Use stack to Create a Four-Function Calculator

Stacks are one of computing's most useful data structures. At the machine level, they provide
the mechanism by which a subroutine can be called. At the program level, stacks are used to
solve several common problems. For example, many Al-based searching routines rely on
stacks. Also, many types of tree traversals employ a stack. One interesting use of a stack is in
a postfix-style calculator. When using this type of calculator, you first enter the operands and
then the operation that you want applied. For example, to add 10 to 12, you first enter 10,
then 12, then +. As each operand is entered, it is pushed onto the stack. When an operator is
entered, the top two elements are popped, the operation is performed, and the result is
pushed onto the stack. The following program uses the stack class to implement such a
calculator.

// A four-function postfix calculator.

#include
#include
#include
#include

<iostream>
<stack>
<string>
<cmath>

131

138 Herb Schildt's C++ Programming Cookbook

using namespace std;

int main ()

{
stack<double> stck;
double a, b;
string s;

do {
cout << ": ";
cin >> s;
switch(s[0]) {
case 'q': // quit the calculator

break;
case '.': // show top-of-stack
cout << stck.top() << "\n";
break;
case '+': // add
if (stck.size() < 2) {
cout << "Operand Missing\n";
break;

}

a = stck.top();
stck.pop () ;

b = stck.top();
stck.pop () ;

cout << a+b << "\n";
stck.push (a+b) ;

break;

case '-': // subtract
// See if user entered a negative number.
if(s.size() != 1) {

// Push value onto the stack.
stck.push(atof (s.c_str()));
break;

}

// otherwise, is a subtraction

if (stck.size() < 2) {
cout << "Operand Missing\n";
break;

}

a = stck.top();
stck.pop () ;
b = stck.top();
stck.pop () ;
cout << b-a << "\n";
stck.push(b-a) ;
break;

case '*': // multiply
if (stck.size() < 2) {

Chapter 3:

cout << "Operand Missing\n";

break;

}

a = stck.top();
stck.pop () ;
b = stck.top();
stck.pop () ;
cout << a*b <<
stck.push (a*b) ;
break;
case '/':
if (stck.size ()

n\nu ;

// divide
< 2)

{

cout << "Operand Missing\n";

break;

}

a = stck.top();
stck.pop () ;
b = stck.top();
stck.pop () ;
cout << b/a <<
stck.push (b/a) ;
break;

default:

n\nu ;

// push value onto the stack
stck.push(atof (s.c_str()));

break;

}

} while(s != "q");

return O;

}

A sample run is shown here:

Working with STL Containers

139

140 Herb Schildt's C++ Programming Cookbook

For the most part, the operation of the calculator is intuitive, but there are a couple of points
to keep in mind. First, to see the value on the top of the stack, enter a period. This means that
you will need to precede values that are less than 1 with a leading zero, as in 0.12, for example.
Second, notice that when an entry begins with a minus sign, if its length is longer than 1, it is
assumed that the user is entering a negative number and not requesting a subtraction.

Options and Alternatives

As long as the container meets the requirements specified by the adaptor, any container can
be used as the underlying container. To use a different container, simply specify its class
name when creating an instance of the adaptor. For example, the following creates a queue
that adapts list rather than deque:

queue<char, list<char> > q;

Since q uses list as its underlying container, it will be subject to all of list's benefits and
disadvantages. Usually, the default container is your best choice, but you do have a choice.
You could even use your own custom container as the basis for a queue. The same general
principle applies to the other container adaptors, too.

One other point: Notice that there is a space between the two closing angle brackets that
end the preceding declaration. Because of a quirk in the C++ syntax, this space is necessary.
Without it, the compiler will mistake two closing angle brackets as a right shift (>>) and not
as nested template terminators. Forgetting this space is a common error, which can be hard
to find since your program looks correct.

”~

‘ Store User-Defined Objects in a Container

I Key Ingredients
Headers Classes Functions
user-defined bool operator<(user-type a, user-type b)
bool operator==(user-type a, user-type b)

An STL container can be used to store objects of classes that you create. However, these
classes must meet a minimal set of requirements. This recipe describes those requirements
and demonstrates their implementation. It creates a class called part that encapsulates the
name and number associated with some part, such as a nail or a bolt. However, the same
basic approach can be used to store any type of object within any type of container.

Step-by-Step
To enable objects of a class that you create to be stored in a sequence container involves the
following steps:

Chapter 3: Working with STL Containers 141

. The class must have a publicly accessible copy constructor.

. The class must provide a publicly accessible destructor.

. The class must provide a publicly accessible assignment operator.

In some cases, the class must provide a publicly accessible default constructor.

In some cases, the class must provide a publicly accessible operator==() function.

o Ul R W N e

. In some cases, the class must provide a publicly accessible operator<() function.

To enable objects of a class that you create to be stored in an associative container
involves the following steps:

1. All of the requirements described for a sequence container must be met.

2. The class must provide a publicly accessible operator<() function because all
associative containers are sorted.

Discussion

For all containers, if an object is to be stored in a container, then its class must provide the
following publicly accessible functions:

¢ Copy constructor
¢ Destructor

e operator==()

Depending upon the specific usage, a publicly accessible default (parameterless) constructor
and operator==() are often needed. A key point to understand, however, is that the default
copy constructor, parameterless constructor, destructor, and assignment operator provided
automatically by a class satisfy this requirement. Therefore, you don't always need to
explicitly declare these items.

In order to use a sequence container, such as vector, with certain algorithms, such as
sort(), your class must provide an operator<() function that compares two objects. Some
other algorithms, such as find(), require that an operator==() function be provided that
determines when one object equals another.

In order for an object to be stored in an associative container, such as set or multiset,
you must provide an operator<(). Sets are ordered by using the < operator. It is also used
by the find(), upper_bound(), lower_bound(), and equal_range() functions.

Example

The following example creates a class called part that encapsulates the name and number of
a part. Notice that operator<() and operator==() are defined. The < operator enables a
container that stores part objects to be operated on by algorithms that require comparisons.
The program demonstrates this by sorting the vector using the sort() algorithm The ==
operator enables the equality of two part objects to be determined by algorithms such as
find(), which is also used by the program. (Recipes that describe the STL algorithms are
presented in Chapter 4.)

122

Herb Schildt's C++ Programming Cookbook

//
//
//
//
//
//
//

Store user-defined objects in a vector.

The objects being stored are instances of the
part class. The operator<() and operator==() are
defined for part objects. This lets the objects
be operated on by various algorithms, such as
sort () and find() .

#include <iostream>
#include <vectors>
#include <algorithm>
#include <strings>

using namespace std;

//

This class stores information on parts.

class part {

string name;
unsigned number;

public:

Vi

// Default constructor.
part () { name = ""; number = 0; }

// Construct a complete part object.
part (string n, unsigned num) {

name = n;

number = num;

}

// Accessor functions for part data.
string get name() { return name; }
unsigned get number () { return number; }

void show(const char *msg, vector<part> vect) ;

// Compare objects using part number.
bool operator<(part a, part b)

{
}

return a.get number () < b.get number() ;

// Check for equality based on part number.
bool operator==(part a, part b)

{
}

return a.get number () == b.get number () ;

int main ()

{

vector<part> partlist;

Chapter 3: Working with STL Containers

// Initialize the parts list.
partlist.push back(part ("flange", 9324));
partlist.push back(part ("screw", 8452));
partlist.push back (part ("bolt", 6912));
partlist.push back(part ("nail", 1274));

// Display contents of the vector.
show ("Parts list unsorted:\n", partlist);
cout << endl;

// Use the sort() algorithm to sort the parts list.

// This requires that operator<() be defined for part.

sort (partlist.begin(), partlist.end());

show ("Parts list sorted by part number:\n", partlist);

// Use the find() algorithm to find a part given its number.
// This requires that operator==() be defined for part.

cout << "Searching for part number 6912.\n";

vector<part>::iterator itr;

itr = find(partlist.begin(), partlist.end(), part("", 6912));
cout << "Part found. Its name is " << itr->get name() << ".\n";
return 0;

}

// Display the contents of a vector<parts.
void show(const char *msg, vector<parts> vect) {
vector<part>::iterator itr;

cout << msg;

cout << " Part#\t Name\n";
for (itr=vect.begin(); itr != vect.end(); ++itr)
cout << " " << itr->get number() << "\t "
<< itr->get name() << endl;;

cout << "\n";

}
The output is shown here:

Parts list unsorted:
Part# Name

9324 flange
8452 screw
6912 bolt
1274 nail

Parts list sorted by part number:
Part# Name
1274 nail

143

144 Herb Schildt's C++ Programming Cookbook

6912 bolt
8452 screw
9324 flange

Searching for part number 6912.
Part found. Its name is bolt.

Options and Alternatives

An example that demonstrates storing a user-defined class object in a set is shown in Use set
and multiset.

It has been my experience that there is some variation between compilers regarding
precisely what a class must provide in order for objects of that class to be stored in a
container and/or operated on by algorithms. The requirements described in this recipe are
in accordance with those specified by the ANSI/ISO standard for C++. However, I have
seen some cases in which additional requirements must be met. The discrepancies between
implementations were greater in the past than they are today. Nevertheless, although this
recipe describes general requirements that a class must meet in order to be stored in a
container, they should be treated as guidelines (rather than hard and fast rules) that you
may need to adjust to fit your specific situation.

Chapter 3: Working with STL Containers 145

rd

Basic Associative Container Techniques

I Key Ingredients
Headers Classes Functions
<map> map iterator begin()

void clear()

bool empty() const

iterator end()

size_type erase(const key_type &k)

iterator find(const key_type &k)

pair<iterator, bool> insert(const value_type &val)
reverse_iterator rbegin()

reverse_iterator rend()

size_type size() const

void swap(map<Key, T, Comp,
Allocator> &ob)

<map> template <class Key, class T,
class Comp, class Allocator>
bool operator==(
const map<Key, T, Comp, Allocator>
&leftop,
const map<Key, T, Comp, Allocator>
&rightop)
template <class Key, class T,
class Comp, class Allocator>
bool operator<(
const map<Key, T, Comp, Allocator>
&leftop,
const map<Key, T, Comp, Allocator>
&rightop)
template <class Key, class T,
class Comp, class Allocator>
bool operator>(
const map<Key, T, Comp, Allocator>

&leftop,
const map<Key, T, Comp, Allocator>
&rightop)
<utility> pair
<utility> template <class Ktype, class Vtype>

pair<Ktype, Vtype> make_pair(
const Ktype &k,
const Vtype &v)

146

Herb Schildt's C++ Programming Cookbook

All associative containers share common functionality, and all are handled in essentially the
same way. This recipe uses this common functionality to demonstrate the basic techniques
needed to create and use an associative container.
This recipe shows how to:

¢ Create an associative container.

¢ Create elements that consist of key/value pairs.

¢ Add elements to an associative container.

¢ Determine the size of the container.

e Use an iterator to cycle through the container.

¢ Assign one container to another.

¢ Determine when one container is equivalent to another.

¢ Remove elements from the container.

¢ Exchange the contents of one container with another.

* Determine if a container is empty.

¢ Find an element given its key.
This recipe uses the map class. In general, the techniques described here also apply to the
other associative containers, such as set, defined by the STL. However, map stores key/value
pairs in which the type of the key and the type of the value may differ. The set container
stores objects in which the key and the value are part of the same object. Furthermore, map
creates a container in which each key must be unique. A multimap container, by contrast,
allows duplicate keys. Therefore, while the general principles shown here apply to any

associative container, some adaptation will be needed, depending upon which associative
container is used.

Step-by-Step

To create and use an associative container involves these steps:

. Create an instance of the desired associative container. In this recipe, map is used.

. Construct pair objects, which are the type of objects stored in a map.

Add elements to the container by calling insert().

. Obtain the number of elements in the container by calling size().

. Determine if the container is empty (i.e., it contains no elements) by calling empty().
. Remove elements from the container by calling erase().

. Remove all elements from a container by calling clear().

. Find an element with a specified key by calling find().

O 0 N SN Ul e W N

. Obtain an iterator to the start of the container by calling begin(). Obtain an iterator
to one past the end of the container by calling end().

10. Obtain a reverse iterator to the end of the container by calling rbegin(). Obtain an
iterator to one before the start of the container by calling rend().

11. Cycle through the elements in the container via an iterator.

Chapter 3: Working with STL Containers

12. Exchange the contents of one container with another via swap().

13. Determine when one associative container is equal to, less than, or greater than
another.

Discussion

The STL supports two basic flavors of associative container: maps and sets. In a map, each
element consists of a key/value pair and the type of the key can differ from the type of the
value. In a set, the key and the value are embedded in the same object. Although both maps
and sets operate in essentially the same way, a map is used by this recipe because it best
demonstrates the essential techniques required to use any associative container.

The template specification for map is shown here:

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<T> > class map

Here, Key is the data type of the keys and T is the type of values being stored (mapped).
The function that compares two keys is specified by Comp. Notice that this defaults to the
less function object. The allocator is specified by Allocator, which defaults to the standard
allocator.

A central aspect of an associative container is that it maintains an ordered collection of
elements based on the value of the keys. The specific order is determined by the comparison
function, which is less by default. This means that, by default, the elements in an associative
container are stored in ascending key order. However, it is possible to specify a comparison
object that stores the elements differently.

The map class supports three constructors. The two used in this recipe are shown here:

explicit map(const Comp &cmpfn = Comp(), const Allocator &alloc = Allocator())
map(const map<Key, T, Comp, Allocator> &ob)

The first form constructs an empty map. The second form constructs a map that contains the
same elements as ob and is map's copy constructor. The cmpfn parameter specifies the
comparison function used to order the map. In most cases, you can allow this to default.
The alloc parameter specifies the allocator, which also is typically allowed to default. To use
a map, you must include the <map> header.

The type of object held by a map is an instance of pair, which is a struct that
encapsulates two objects. It is declared like this:

template <class Ktype, class Vtype> struct pair {
typedef Ktype first type;
typedef Vtype second_type;
Ktype first; // for map elements, contains the key
Vtype second; // for map elements, contains the value

// Constructors

pair () ;

pair (const Ktype &k, const Vtype &v);

template<class A, class B> pair(const pair<A, B> &ob);

141

148

Herb Schildt's C++ Programming Cookbook

The pair class can be used to hold any pair of objects. However, when used to hold a key/
value pair, the value in first contains the key and the value in second contains the value
associated with that key. The pair class requires the <utility> header, which is automatically
included by <map>.

You can construct a pair by using either one of pair's constructors or by using the
make_pair() function, which is also declared in <utility>. It constructs a pair object based
upon the types of the data used as parameters. The make_pair() function is generic and has
this prototype:

template <class Ktype, class Vitype>
pair<Ktype, Vtype> make_pair(const Ktype &k, const Vtype &v)

As you can see, it returns a pair object consisting of values of the types specified by Ktype
and Vtype. The advantage of make_pair() is that the types of the objects being stored are
determined automatically by the compiler rather than being explicitly specified by you.

For map, the type value_type is a typedef for pair<const Key, T>. Therefore, a map
holds instances of pair. Furthermore, the iterator type defined for map points to objects of
type pair<Key, T>. Thus, when a map function returns an iterator, the key is available
through the first field of pair and the value is obtained through pair's second field.

After a map has been created, pair objects can be added to it. One way to do this that
works for all associative containers is to call insert(). All associative containers support at
least three versions of insert(). The one used here is:

pair<iterator, bool> insert(const value_type &uval)

It inserts wval into the invoking container at a point that maintains the ordering of the associative
container. (Recall that value_type is a type_def for pair<const Key, T>.) The function returns
a pair object that indicates the outcome of the operation. If val can be inserted, the bool value
(which is in the second field) will be true, and false otherwise. The iterator value (which is in
the first field) will point to the inserted element if successful or to an already existing element
that uses the same key. The insertion operation will fail if an attempt is made to insert an
element into a container that requires unique keys (such as map or set) and the container
already contains the key. An associative container will automatically grow as needed when
elements are added to it.

You can remove one or more elements from an associative container by calling erase().
It has at least three forms. The one used by this recipe is shown here:

size_type erase(const key_type &k)

It removes from the container all elements that have keys with the value k. For associative
containers that require unique keys, a call to erase() removes only one element. It returns
the number of elements removed, which will be either zero or one for a map.

You can remove all elements from an associative container by calling clear(), shown here:

void clear()

You can obtain an iterator to an element in an associative container that has a specified
key by calling find(), shown here:

iterator find(const key_type &k)

Chapter 3: Working with STL Containers

Here, k specifies the key. If the container contains an element that has a key equal to k, find()
returns an iterator to the first matching element. If the key is not found, then end() is returned.

You can determine the number of elements in a container by calling size(). To determine
if a container is empty, call empty(). Both functions are shown here:

bool empty() const

size_type size() const

You can obtain an iterator to the first element in the container by calling begin().
Because associative containers are ordered, this will always be the first element as specified
by the comparison function. An iterator to one past the last element in the sequence is
obtained by calling end(). These functions are shown here:

iterator begin()

iterator end()

To declare a variable that will be used as an iterator, you must specify the iterator type
of the container. For example, this declares an iterator that can point to elements within
a map<string, int>:

map<string, int>::iterator itr;

You can use iterators to cycle through the contents of an associative container. The
process is similar to that used to cycle through the contents of a sequence container. The
main difference is that for associative containers that store key/value pairs, the object
pointed to by the iterator is a pair. For example, assuming a properly declared iterator
called itr, here is a loop that displays all keys and values in a map called mymap:

for (itr=mymap.begin(); itr != mymap.end(); ++itr)
cout << "Key: " << itr->first << ", Value:" << itr->second << endl;

The loop runs until itr equals mymap.end(), thus ensuring that all elements are displayed.
Remember: end() does not return a pointer to the last element in a container. Instead, it
returns a pointer one past the last element. Thus, the last element in a container is pointed to
by end() -1.

As explained in the overview, a reversible container is one in which the elements can
be traversed in reverse order (back to front). All of the built-in associative containers are
reversible. When using a reversible container, you can obtain a reverse iterator to the end of
the container by calling rbegin(). A reverse iterator to one before the first element in the
container is obtained by calling rend(). These functions are shown here:

reverse_iterator rbegin()

reverse_iterator rend()

There are also const versions of these functions. A reverse iterator is declared just like a
regular iterator. For example:

map<string, int>::reverse iterator ritr;

149

150

Herb Schildt's C++ Programming Cookbook

You can use a reverse iterator to cycle through a map in reverse order. For example,
given a reverse iterator called ritr, here is a loop that displays the keys and values for a map
called mymap, from back to front:

for(ritr=mymap.rbegin(); ritr != mymap.rend(); ++ritr)
cout << "Key: " << ritr->first << ", Value:" << ritr-s>second << endl;

The reverse iterator ritr starts at the element pointed to by rbegin(), which is the last
element in the container. It runs until it equals rend(), which points to an element that is
one before the start of the container. (It is sometimes helpful to think of rbegin() and rend()
returning pointers to the start and end of a reversed container.) Each time a reverse iterator
is incremented, it points to the previous element. Each time it is decremented, it points to
the next element.

The contents of two associative containers can be exchanged by calling swap(). Here is
the way it is declared by map:

void swap(map<Key, T, Comp, Allocator> &ob)

The contents of the invoking container are exchanged with those specified by ob.

Example

The following example uses map to demonstrate the basic associative container techniques:

// Demonstrate the basic associative container operations.

//

// This example uses map, but the same basic techniques can be
// applied to any associative container.

#include <iostream>
#include <strings>
#include <map>

using namespace std;
void show(const char *msg, map<string, int> mp);

int main() {
// Declare an empty map that holds key/value pairs
// in which the key is a string and the value is an int.
map<string, int> m;

// Insert characters into m. An iterator to the inserted
// object is returned.

m.insert (pair<string, ints>("Alpha", 100));

m.insert (pair<string, ints>("Gamma", 300)) ;

m.insert (pair<string, ints>("Beta", 200));

// Declare an iterator to a map<string, itrs.
map<string, ints>::iterator itr;

// Display the first element in m.

Chapter 3: Working with STL Containers 151

itr = m.begin() ;
cout << "Here is the first key/value pair in m: "
<< itr->first << ", " << itr->second << endl;

// Display the last element in m.
itr = m.end() ;
--itr;
cout << "Here is the last key/value pair in m: "
<< itr->first << ", " << itr->second << "\n\n";

// Display the entire contents of m.
show ("Entire contents of m: ", m);

// Show the size of m, which is the number of elements
// currently held by m.
cout << "Size of m is " << m.size() << "\n\n";

// Declare a reverse iterator to a map<string, itrs.
map<string, ints>::reverse iterator ritr;

// Now, show the contents of m in reverse order.
cout << "The contents of m in reverse:\n";

for (ritr=m.rbegin(); ritr != m.rend(); ++ritr)
cout << " " << ritr->first << ", " << ritr->second << endl;
cout << endl;

// Find an element given its key.
itr = m.find("Beta");

if (itr != m.end())
cout << itr->first << " has the value " << itr->second << "\n\n";
else

cout << "Key not found.\n\n";

// Create another map that is the same as the first.
map<string, int> m2(m);
show ("Contents of m2: ", m2);

// Compare two maps.
if (m == m2) cout << "m and m2 are equivalent.\n\n";

// Insert more elements into m and m2.
cout << "Insert more elements into m and m2.\n";
m.insert (make_pair ("Epsilon", 99));

m2.insert (make pair("Zeta", 88));
show ("Contents of m are now: ", m);
show ("Contents of m2 are now: ", m2);

// Determine the relationship between m and m2. This is a

// lexicographical compare. Therefore, the first non-matching
// element in the container determines which

// container is less than the other.

if(m < m2) cout << "m is less than m2.\n\n";

152 Herb Schildt's C++ Programming Cookbook

// Remove the Beta from m.

m.erase ("Beta") ;

show ("m after removing Beta: ", m);

if (m > m2) cout << "Now, m is greater than m2.\n\n";

// Exchange the contents of m and m2.
cout << "Exchange m and m2.\n";
m.swap (m2) ;

show ("Contents of m: ", m);

show ("Contents of m2: ", m2);

// Clear m.
m.clear () ;
if (m.empty()) cout << "m is now empty.";

return 0;

}

// Display the contents of a map<string, int> by using

// an iterator.

void show (const char *msg, map<string, ints> mp) {
map<string, ints>::iterator itr;

cout << msg << endl;
for (itr=mp.begin(); itr != mp.end(); ++itr)

cout << " " << itr->first << ", " << itr->second << endl;
cout << endl;

}
The output is shown here:

Here is the first key/value pair in m: Alpha, 100
Here is the last key/value pair in m: Gamma, 300

Entire contents of m:

Alpha, 100
Beta, 200
Gamma, 300

Size of m is 3

The contents of m in reverse:

Gamma, 300
Beta, 200
Alpha, 100

Beta has the wvalue 200

Contents of m2:
Alpha, 100
Beta, 200
Gamma, 300

Chapter 3: Working with STL Containers

m and m2 are equivalent.

Insert more elements into m and m2.
Contents of m are now:

Alpha, 100

Beta, 200

Epsilon, 99

Gamma, 300

Contents of m2 are now:
Alpha, 100
Beta, 200
Gamma, 300
Zeta, 88

m is less than m2.

m after removing Beta:

Alpha, 100
Epsilon, 99
Gamma, 300

Now, m is greater than m2.

Exchange m and m2.
Contents of m:
Alpha, 100
Beta, 200
Gamma, 300
Zeta, 88

Contents of m2:

Alpha, 100
Epsilon, 99
Gamma, 300

m is now empty.

Much of the program is self-explanatory, but there are a few aspects that warrant close
examination. First, notice how a map object is declared by the following line:

map<string, int> m;

This declares a map called m that holds key/value pairs in which the key is of type string
and the value is of type int. This means that the types of objects held by m are instances of
pair<string, int>. Notice that the default comparison function less is used. This means that
objects are stored in the map in ascending, sorted order. Also notice that the default
allocator is used.

Next, key/value pairs are inserted in m by calling insert(), as shown here:

m.insert (pair<string, ints>("Alpha", 100));
m.insert (pair<string, ints>("Gamma", 300)) ;
m.insert (pair<string, ints>("Beta", 200));

153

154

Herb Schildt's C++ Programming Cookbook

Because m uses the default comparison function, the contents are automatically sorted in
ascending order based on the keys. Thus, the order of the keys in the map after the
preceding calls to insert() is Alpha, Beta, Gamma, as the output confirms.

Next, an iterator to the map is declared by the following line:

map<string, int>::iterator itr;

Because the iterator type must match exactly the container type, it is necessary to specify the
same key and value types. For example, an iterator that contains key/value pairs of type
string/int won't work with a map that contains key/value pairs of type ofstream/string.

The program then uses the iterator to display the first and last key/value pairs in the
map by use of this sequence:

// Display the first element in m.

itr = m.begin();

cout << "Here is the first key/value pair in m: "
<< itr->first << ", " << itr-s>second << endl;

// Display the last element in m.
itr = m.end();
--itr;
cout << "Here is the last key/value pair in m: "
<< itr->first << ", " << itr-ssecond << "\n\n";

As explained, the begin() function returns an iterator to the first element in the container
and end() returns an iterator to one past the last element. This is why itr is decremented
after the call to end() so that the last element can be displayed. Recall that the type of object
pointed to by a map iterator is an instance of pair. The key is contained in the first field and
the value in the second field. Also notice how the pair fields are specified by applying the
—> operator to itr in just the same way you would use —> with a pointer. In general, iterators
work like pointers and are handled in essentially the same way.

Next, the entire contents of m are displayed by a call to show(), which displays the
contents of the map<string, int> that it is passed. Pay special attention to how the key/
value pairs are displayed by the following for loop:

for(itr=mp.begin(); itr != mp.end(); ++itr)
cout << " " << itr->first << ", " << itr-s>sgsecond << endl;

Because end() obtains an iterator that points one past the end of the container, the loop
stops immediately after the last element has been displayed.

The program then displays the contents of m in reverse by using a reverse iterator and a
loop that runs from m.rbegin() to m.rend(). As explained, a reverse iterator operates on the
container back to front. Therefore, incrementing a reverse iterator causes it to point to the
previous element in the container.

Pay special attention to how two containers are compared by use of the ==, <, and >
operators. For associative containers, comparisons are conducted using a lexicographical
comparison of the elements, which in the case of map, are key/value pairs. Although the
term "lexicographical” literally means "dictionary order," its meaning is generalized as it
relates to the STL. For container comparisons, two containers are equal if they contain the

Chapter 3: Working with STL Containers

same number of elements, in the same order, and all corresponding elements are equal. For
associative containers that hold key/value pairs, this means that each element's key and
value must match. If a mismatch is found, the result of a lexicographical comparison is
based on the first non-matching elements. For example, assume one map contains the pair:

test, 10
and another contains:
test, 20

Even though the keys are the same, because the values differ, these two elements are not
equivalent. Therefore, the first map will be judged to be less than the second.

One other point of interest is the sequence that finds an element given its key. It is
shown here:

// Find an element given its key.
itr = m.find ("Beta") ;

if (itr != m.end())
cout << itr->first << " has the value " << itr-ssecond << "\n\n";
else

cout << "Key not found.\n\n";

The ability to find an element given its key is one of the defining aspects of associative
containers. (They are called "associative containers” for a reason!) The find() method searches
the invoking container for a key that matches the one specified as an argument. If it is found,
an iterator to the element is returned. Otherwise, end() is returned.

Options and Alternatives

You can count the number of elements in an associative container that match a specified key
by calling count(), shown here:

size_type count(const key_type &k) const

It returns the number of times k occurs in the container. For containers that require unique
keys, this will be either zero or one.

All associative containers let you determine a range of elements in which an element
falls. This ability is supported by three functions: lower_bound(), upper_bound(), and
equal_range(). They are shown here. (There are also const versions of these functions.)

iterator lower_bound(const key_type &bk)
iterator upper_bound(const key_type &k)
pair<iterator, iterator> equal_range(const key_type &k)

The lower_bound() function returns an iterator to the first element in the container with a
key equal to or greater than k. The upper_bound() function returns an iterator to the first
element in the container with a key greater than k. The equal_range() function returns a
pair of iterators that point to the upper bound and the lower bound in the container for a
specified key by calling equal_range().

155

156

Herb Schildt's C++ Programming Cookbook

All associative containers support three forms of insert(). One was described earlier.
The other two versions of insert() are shown here:

iterator insert(iterator 7, const value_type &uval)

template <class Inlter> void insert(Inlter start, Inlter end)

The first form inserts val into the container. For associative containers that allow duplicates,
this form of insert will always succeed. Otherwise, it will insert val only if its key is not
already in the container. In either case, an iterator to the element with the same key is
returned. The iterator specified by i indicates a good place to start the search for the proper
insertion point. Because associative containers are sorted based on keys, supplying a good
starting point can speed up insertions. The second form of insert() inserts the range start to
end-1. Whether duplicate keys will be inserted depends upon the container. In all cases, the
resulting associative container will remain sorted based on keys.

In addition to the form of erase() used by this recipe, all associative containers support
two other forms. They are shown here:

void erase(iterator 7)

void erase(iterator start, iterator end)

The first form removes the element pointed to by i. The second form removes the elements
in the range start to end-1.

As mentioned, the STL supports two categories of associative containers: maps and sets.
A map stores key/value pairs. A set stores objects in which the key and the value are the
same. Within these two categories, there are two divisions: those associative containers that
require unique keys and those that allow duplicate keys. The map and set containers
require unique keys. The multimap and multiset containers allow duplicate keys. Because
each associative container uses a different strategy, it is usually a simple matter to choose
which is best for an application. For example, if you need to store key/value pairs and all
keys are unique, use map. For maps that require duplicate keys, use multimap.

Key Ingredients

Headers Classes Functions

<map> map iterator find(const key_type &k)

pair<iterator, bool>
insert(const value_type &val)

T &operator|] (const key_type &k)

<utility> pair

Chapter 3: Working with STL Containers 157

This recipe describes what is probably the most widely used associative container: map. A
map stores key/value pairs, and all keys must be unique. Therefore, given a key, you can
easily find its value. This makes map especially useful for maintaining property lists,
storing attribute and option settings, or anyplace else in which a value must be found
through a key. For example, you might use map to create a contact list that uses a person's
name for the key and a telephone number for the value. Such a map would let you easily
retrieve a phone number given a name. A map is an ordered container, with the order based
on the keys. By default, the keys are in ascending order, but it is possible to specify a
different ordering.

NOTE The basic mechanism required to use an associative container, including map, was described
in Basic Associative Container Techniques. The recipe given here focuses on those aspects of
map that go beyond those general techniques.

Step-by-Step

To use map involves these steps:

1. Create a map instance of the desired type.
2. Add elements to the map by calling insert() or by using the subscripting operator.
3. Obtain or set the value of an element by using the subscripting operator.

4. Find a specific element in the map by calling find().

Discussion

The map class supports an associative container in which unique keys are mapped with
values. In essence, a key is simply a name that you give to a value. Once a value has been
stored, you can retrieve it by using its key. Thus, in its most general sense, a map is a list of
key/value pairs.

The template specification for map is shown here:

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<pair<const Key, T> > > class map

Here, Key is the data type of the keys, T is the data type of the values being stored, and Comp
is a function that compares two keys. The following constructors are defined for map:

explicit map(const Comp &cmpfn = Comp(),
const Allocator &alloc = Allocator())

map(const map<Key, T, Comp, Allocator> &ob)

template <class Inlter> map(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
const Allocator &alloc = Allocator())

The first form constructs an empty map. The second form constructs a map that contains the
same elements as ob and is map's copy constructor. The third form constructs a map that
contains the elements in the range start to end—1. The function specified by cmpfn, if present,

158

Herb Schildt's C++ Programming Cookbook

determines the ordering of the map. Most often, you will allow both cmpfn and alloc to
default. To use map, you must include <map>.

The map class supports bidirectional iterators. Thus, the container can be accessed through
an iterator in both the forward and reverse directions, but random-access operations are not
supported. However, the [] operator is supported, but not in its traditional usage.

Key/value pairs are stored in a map as objects of type pair. (See Basic Associative
Container Techniques for details on pair.) The iterator type defined by map points to objects of
type pair<const Key, T>. Thus, when a map function returns an iterator, the key is available
through the first member of pair and the value is obtained through pair's second field.

The map class supports all of the standard functions specified for associative containers,
such as find(), count(), erase(), and so on. These are described in Basic Associative Container
Techniques.

Elements can be added to a map in two ways. The first is by the insert() function. The
general operation of insert() is described in Basic Associative Container Techniques. Here is a
summary. All associative containers support at least three versions of insert(). The one used
by this recipe is:

pair<iterator, bool> insert(const value_type &uval)

It inserts val into the invoking container at a point that maintains the ordering of the associative
container. In map, value_type is a type_def for pair<const Key, T>. Thus, this version of
insert() inserts a key/value pair into the invoking map. It returns a pair object that
indicates the outcome of the operation. As explained, map requires that all keys be unique.
Therefore, if val contains a unique key, the insertion will be successful. In this case, the bool
value of the returned pair object (which is in the second field) will be true. However, if the
specified key already exists, then this value will be false. The iterator portion of the returned
pair object (which is in the first field) will point to the inserted element if successful or to an
already existing element that uses the same key.

The second way to add a key/value pair to a map involves the use of operator[().
You may be surprised by the way in which it works. Its prototype is shown here:

T &operator[](const key_type &k)

Notice that k (which receives the index value) is not an integer. Rather, it is an object that
represents a key. This key is then used to find the value, and the function returns a reference
to the value associated with the key. Thus, the subscripting operator is implemented by map
so that it uses a key as the index and it returns the value associated with that key.

To best understand the effects of operator[](), it helps to work through an example.
Consider a map called phonemap that contains key/value pairs consisting of a person's
name and phone number. Also assume that there is an entry in the map that has the key
"Tom," which has the value "555-0001." In this case, the following statement displays the
phone number linked to "Tom":

cout << phonemap["Tom"] ;

Because "555-0001" is the value associated with "Tom", this statement displays 555-0001.
There is a very important aspect of the [] operator as it applies to map that greatly

expands its power. Because of the way that [] is implemented, it will always succeed. If the

key you are looking for is not in the map, it is automatically inserted, with its value being

Chapter 3: Working with STL Containers 159

that of the type's default constructor (which is zero for the built-in types). Thus, any key
that you search for will always be found!

As mentioned, the value returned by the [] operator is a reference to the value associated
with the key used as the index. Thus, you can use the [] operator on the left side of an
assignment to give an element a new value. For example:

phonemap["Tom"] = "555-1234";

This statement assigns the number 555-1234 to the key "Tom". If "Tom" is not currently in
the map, it will first be automatically added (with a default value for the key) and then
assigned the number 555-1234. If it did previously exist, then its value is simply changed to
the new number.

One important point: Whether elements are added by calling insert() or by using
operator[](), the map is maintained in sorted order based on keys.

Because the map class supports bidirectional iterators, it can be traversed in both the
forward and reverse directions through an iterator. Furthermore, the map class supports
both the iterator and reverse_iterator types. (Corresponding const types are also provided.)
Because map elements consist of pair objects, map iterators point to pair objects.

You can obtain an iterator to the first element in a map by calling begin(). An iterator to
one past the last element is obtained by calling end(). You can obtain a reverse iterator to
the end of the map by calling rbegin() and a reverse iterator to the element that is one
before the beginning of the map by calling rend(). These functions and the technique used
to cycle through an associative container by use of an iterator are described in Basic Associative
Container Techniques.

You can obtain an iterator to a specific element by calling find(), which is implemented
like this for map:

iterator find(const key_type &k)

This function returns an iterator to the element whose key matches k. If the key is not found,
then end() is returned. A const version is also available. It is important to understand that
unlike [], if the entry being sought is not found, find() will not create the element.

The map class has the following performance characteristics. Maps are designed for the
efficient storage of key/value pairs. In general, inserting or deleting elements in a map takes
place in logarithmic time. There are two exceptions. First, an element that is inserted at a
given location takes place in amortized constant time. Amortized constant time is also
consumed when a specific element is deleted given an iterator to that element. Insertion
into a map invalidates no iterators or references to elements. A deletion invalidates only
iterators or references to the deleted elements.

Example

The following example shows map in action. It creates a container that works as a phone
directory, in which a person's name is the key and the phone number is the value.

// Demonstrate map.

!/

// This program creates a simple phone list in which
// a person's name is the key and the phone number is

160

Herb Schildt's C++ Programming Cookbook

// the value. Thus, you can look up a phone number
// given a name.

#include <iostream>
#include <strings>
#include <map>
#include <utilitys
using namespace std;

void show(const char *msg, map<string, string> mp) ;

int main() {
map<string, string> phonemap;

// Insert elements by using operator|[].

phonemap ["Tom"] = "555-1234";

phonemap ["Jane"] = "314 555-6576";

phonemap ["Ken"] = "660 555-9843";

show ("Here is the original map: ", phonemap) ;

cout << endl;

// Now, change the phone number for Ken.
phonemap ["Ken"] = "415 997-8893";
cout << "New number for Ken: " << phonemap["Ken"] << "\n\n";

// Use find() to find a number.
map<string, strings::iterator itr;
itr = phonemap.find("Jane") ;
if (itr != phonemap.end())
cout << "Number for Jane is " << itr-s>second << "\n\n";

// Cycle through the map in the reverse direction.

map<string, strings::reverse iterator ritr;

cout << "Display phonemap in reverse order:\n";

for (ritr = phonemap.rbegin(); ritr != phonemap.rend(); ++ritr)
cout << " " << ritr->first << ": " << ritr->second << endl;
cout << endl;

// Create a pair object that will contain the result
// of a call to insert ().
pair<map<string, string>::iterator, bool> result;

// Use insert () to add an entry.

result = phonemap.insert (pair<string, string>("Jay", "555-9999"));
if (result.second) cout << "Jay added.\n";

show ("phonemap after adding Jay: ", phonemap) ;

// Duplicate keys are not allowed, as the following proves.

result = phonemap.insert (pair<string, strings("Jay", "555-1010")) ;
if (result.second) cout << "Duplicate Jay added! Error!";

else cout << "Duplicate Jay not allowed.\n";

Chapter 3: Working with STL Containers 161

show ("phonemap after attempt to add duplicate Jay key: ", phonemap) ;

return O;

}

// Display the contents of a map<string, string> by using

// an iterator.

void show (const char *msg, map<string, strings> mp) {
map<string, strings::iterator itr;

cout << msg << endl;

for (itr=mp.begin(); itr != mp.end(); ++itr)
cout << " " << itr->first << ": " << itr->second << endl;

cout << endl;

}
The output is shown here:

Here is the original map:
Jane: 314 555-6576
Ken: 660 555-9843
Tom: 555-1234

New number for Ken: 415 997-8893
Number for Jane is 314 555-6576

Display phonemap in reverse order:
Tom: 555-1234
Ken: 415 997-8893
Jane: 314 555-6576

Jay added.
phonemap after adding Jay:
Jane: 314 555-6576
Jay: 555-9999
Ken: 415 997-8893
Tom: 555-1234

Duplicate Jay not allowed.
phonemap after attempt to add duplicate Jay key:
Jane: 314 555-6576
Jay: 555-9999
Ken: 415 997-8893
Tom: 555-1234

In the program, notice how the [] operator is used. First, it adds elements to phonemap
in the following statements:

phonemap ["Tom"] = "555-1234";
phonemap ["Jane"] = "314 555-6576";
phonemap ["Ken"] = "660 555-9843";

162

Herb Schildt's C++ Programming Cookbook

When phonemap is created, it is initially empty. Therefore, when the preceding statements
execute, there will be no elements in phonemap that have the specified keys. This causes
the key and the value to be added. (In essence, a pair object that contains the key and value
is automatically constructed and added to the map.)

The following use of [] changes the phone number associated with Ken:

phonemap ["Ken"] = "415 997-8893";

Because the key "Ken" is already in the map, its entry is found and its value is set to the new
phone number.

Options and Alternatives

As explained, map holds key/value pairs in which each key is unique. If you want to use
a map that allows duplicate keys, use multimap. It is described by the next recipe.

As described in Basic Associative Container Techniques, all associative containers support
two other forms of insert() in addition to the one used by the recipe. One form is especially
helpful when working with maps because it gives you a way to merge two maps. It is
shown here:

template <class Inlter> void insert(Inlter start, Inlter end)

This function inserts the elements in the range start to end—1 into the invoking map. Elements
are inserted in such a way that the invoking map remains sorted. Of course, the types of
the elements must match those stored in the invoking map and duplicate elements are not
allowed. Here is an example of how this version of insert() can be used. Assuming the
preceding program, the following sequence creates a second telephone list called friends and
then adds those numbers to phonemap:

map<string, strings> friends;

friends["Larry"] = "555-4857";
friends["Cindy"] = "555-1101";
friends["Liz"] = "555-0100";

// Insert the elements from friends into phonemap.
phonemap.insert (friends.begin(), friends.end()) ;

After this sequence executes, phonemap will contain all of its original entries plus those
contained in friends. The resulting phonemap remains in sorted order. The friends map
will be unchanged.

Like all associative containers, map supplies three forms of erase() that let you remove
elements from a map. These are described in Basic Associative Container Techniques, but one
merits a special mention. It is shown here:

size_type erase(const key_type &k)

This version of erase() removes the element with the key passed in k and returns the number
of elements removed. However, for map, it will never remove more than one element because
duplicate elements are not allowed. Therefore, if the key specified by k exists in the invoking
map, it will be removed and 1 will be returned. Otherwise, 0 is returned.

Chapter 3: Working with STL Containers 163

”~

Use multimap

I Key Ingredients
Headers Classes Functions
<map> multimap size_type erase(const key_type &k)

iterator insert(const value_type &val)
iterator find(const key_type &k)
iterator upper_bound(const key_type &k)

<utility> pair

A variation of map is multimap. Like map, multimap stores key/value pairs. However, in a
multimap, the keys need not be unique. In other words, one key might be associated with
two or more different values. Such a container is useful in two general types of situations.
First, it helps in cases in which duplicate keys cannot be avoided. For example, an online
phone directory might have two different numbers for the same person. By using multimap,
a person's name can be used as a key that maps to both numbers. Second, it is well suited for
situations in which a key describes a general relationship that exists between its values. For
example, family members could be represented in a multimap that uses the last name of the
family as the key. The values are the first names. With this approach, to find all members of
the Jones family, you simply use Jones as the key.

No1E Aside from allowing duplicate keys, multimap works much like map, which is described by
the preceding recipe. It also supports all of the operations described in Basic Associative
Container Techniques. This recipe focuses on the unique aspects of multimap.

Step-by-Step
To use multimap involves these steps:
1. Create a multimap instance of the desired type.

2. Add elements, which may include duplicate keys, to the multimap by calling
insert().

3. Find all elements with a specified key by using find() and upper_bound().

4. Remove all elements within a multimap that have the same key by using erase().

Discussion
The multimap template specification is shown here:

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<pair<const Key, T> > > class multimap

164

Herb Schildt's C++ Programming Cookbook

Here, Key is the data type of the keys, T is the data type of the values being stored (mapped),
and Comp is a function that compares two keys. It has the following constructors.

explicit multimap(const Comp &cmpfn = Comp(),
const Allocator &alloc = Allocator())

multimap(const multimap<Key, T, Comp, Allocator> &ob)

template <class Inlter> multimap(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
const Allocator &alloc = Allocator())

The first form constructs an empty multimap. The second form is multimap's copy constructor.
The third form constructs a multimap that contains the elements in the range start to end-1. The
function specified by cmpfn determines the ordering of the multimap. The allocator used by
the multimap is specified by alloc. Typically, both cmpfn and alloc are allowed to default. To
utilize multimap, you must include <map>.

The multimap class supports bidirectional iterators. Thus, the container can be accessed
through an iterator in both the forward and reverse directions. Unlike map, multimap does
not support the [] operator. (Since there is not a one-to-one mapping of keys to values, it is
not possible to index a multimap object by using a key.)

In general, multimap is used like map. The primary difference is that duplicate keys are
allowed. This difference has its greatest impact on two operations: inserting an element and
finding an element. Each is examined, beginning with insertion.

You can add elements to a multimap by using the insert() function. There are three
versions of insert(). The one used in this recipe is shown here:

iterator insert(const value_type &uval)

It inserts val (which is a pair object) into the invoking multimap. (As with map, value_type
is a typedef for pair<const Key, T>.) Because duplicate keys are allowed, val will always
be inserted (until memory is exhausted, of course). The function returns an iterator that
points to the inserted element. Therefore, insert() always succeeds. This differs from the
corresponding version of insert() used by map, which fails if there is an attempt to insert
a duplicate element.

Since the defining characteristic of multimap is its ability to store more than one value
for any given key, this raises the obvious question: How do I find all values associated with
a key? The answer is a bit more complicated than you might expect because the find()
function alone is insufficient to find multiple matches. Recall that find() is a function that
all associative containers must implement. It is defined like this for multimap:

iterator find(const key_type &k)

Here, k specifies the key. If the multimap contains an element that has a key equal to k, find()
returns an iterator to the first matching element. If the key is not found, then end() is returned.
(A const version of find() is also supplied.)

Because find() always returns an iterator to the first matching key, there is no way to make
it move on to the next one. Instead, to obtain the next matching key, you must increment the
iterator returned by find(). The process stops when the last matching key has been found.

Chapter 3: Working with STL Containers 165

The end point is obtained through the use of the upper_bound() function. Its non-const
version is shown here:

iterator upper_bound(const key_type &k)

The upper_bound() function returns an iterator to the first element in the container with a
key greater than k. In other words, it returns an iterator to the element that comes after the
ones with the key you specify. Therefore, assuming some multimap called mm, to find all
matches for a given key, you will use a sequence like this:

7

itr = mm.find (key
if (itr != end())
do {
!/
++itr;
} while(itr != mm.upper bound (key)) ;

}

First, an attempt is made to find an element that matches the specified key. If a match is
found, then the do loop is entered. (Recall that find() returns end() if the key is not found.)
Inside the loop, the iterator is incremented and its value is checked against the upper bound
for the key. This process continues until itr points to the upper bound.

You can erase all elements that share a given key by using this form of erase():

)
{

size_type erase(const key_type &k)

It removes from the multimap elements that have keys with the value k. It returns the
number of elements removed. Two other versions of erase() are supported, which operate
on iterators.

The multimap class has the same performance characteristics as map. In general,
inserting or deleting elements in a map takes place in logarithmic time. The two exceptions
are when an element is inserted at a given location and when a specific element is deleted
given an iterator to that element. In these cases, amortized constant time is required.
Insertion into a multimap invalidates no iterators or references to elements. A deletion
invalidates only those iterators or references to the deleted elements.

Example

The following example demonstrates how multimap can be used to store key/value pairs
in which duplicates might occur. It reworks the example program used by the preceding
recipe so that it uses a multimap rather than a map to store the list of names and telephone
numbers.

// Demonstrating a multimap.

//

// This program uses a multimap to store names and phone
// numbers. It allows one name to be associated with more
// than one phone number.

#include <iostream>
#include <map>

166 Herb Schildt's C++ Programming Cookbook

#include <string>
using namespace std;

void shownumbers (const char *n, multimap<string, string> mp) ;
int main ()

multimap<string, string> phonemap;

// Insert elements by using operator

1.

[

phonemap.insert (pair<string, strings("Tom", "Home: 555-1111")) ;
phonemap.insert (pair<string, strings("Tom", "Work: 555-1234"));
phonemap.insert (pair<string, strings("Tom", "Cell: 555-2224"));
phonemap.insert (pair<string, string>("Jane", "Home: 314 555-6576")) ;
phonemap.insert (pair<string, strings("Jane", "Cell: 314 555-8822"));
phonemap. insert (pair<string, string>("Ken", "Home: 660 555-9843"));
phonemap. insert (pair<string, strings("Ken", "Work: 660 555-1010")) ;
phonemap.insert (pair<string, strings("Ken", "Cell: 217 555-9995")) ;

// Show all phone numbers for Tom, Jane, and Ken
shownumbers ("Tom", phonemap) ;

cout << endl;

shownumbers ("Jane", phonemap) ;

cout << endl;

shownumbers ("Ken", phonemap) ;

cout << endl;

// Now remove all phone numbers for Ken:

cout << "Removing all numbers for Ken.\n";

int count = phonemap.erase ("Ken") ;

cout << count << " elements have been removed.\n\n";

cout << "After removing Ken, attempt to find phone number fails:\n";
shownumbers ("Ken", phonemap) ;

return O;

}

// Show all numbers for a given name.
void shownumbers (const char *n, multimap<string, string> mmp) {
multimap<string, string>::iterator itr;

// Find the first matching key.
itr = mmp.find(n) ;

// If the key was found, then display all phone numbers
// that have that key.

if (itr != mmp.end()) {
cout << "Here are the numbers for " << n << ": " << endl;
do {

cout << " " << itr->second << endl;

Chapter 3: Working with STL Containers

++itr;
} while (itr != mmp.upper bound(n)) ;
1
else
cout << "No entry for " << n << " found.\n";

}
The output is shown here:

Here are the numbers for Tom:
Home: 555-1111
Work: 555-1234
Cell: 555-2224

Here are the numbers for Jane:
Home: 314 555-6576
Cell: 314 555-8822

Here are the numbers for Ken:
Home: 660 555-9843
Work: 660 555-1010
Cell: 217 555-9995

Removing all numbers for Ken.
3 elements have been removed.

After removing Ken, attempt to find phone number fails:
No entry for Ken found.

There are three important features of this program. First, notice how insert() is used to
insert elements with duplicate keys into phonemap, which in this program is a multimap.
As explained, insert() will always succeed (until memory is exhausted, of course) because
multimap allows duplicate keys. Second, notice how all elements with a specific key are
found. As explained in the preceding discussion, to find all matching entries for a given key,
find the first key by calling find(). Then, find subsequent matching keys by incrementing
the iterator returned by find() until it is equal to the upper bound, as obtained from
upper_bound(). Finally, notice how this call to erase() removes all elements that have the
key "Ken':

int count = phonemap.erase("Ken") ;

If you want to erase a specific element that has the key "Ken", then you will need to first
find the entry that you want to erase and remove it using another form of erase(). This
procedure is described in the Options and Alternatives section for this recipe.

Options and Alternatives
As explained, this form of erase() removes all elements that share the specified key:

size_type erase(const key_type &k)

167

168

Herb Schildt's C++ Programming Cookbook

It removes elements that have keys with the value k. If you want to remove one or more specific
elements, then you will need to use one of the other forms of erase(). Recall that all associative
containers, including multimap, support the following additional forms of erase():

void erase(iterator 7)

void erase(iterator start, iterator end)

The first form removes the element pointed to by i. The second form removes the elements
in the range start to end—1. You can use these forms to remove specific elements from a
multimap. For example, assuming the preceding program, the following sequence removes
the work phone number for Tom:

multimap<string, string>::iterator itr;

// Find the first matching key.
itr = phonemap.find("Tom") ;

// Now, search for the specific phone number to remove.

if (itr != phonemap.end()) {
do {
// If the entry contains the work phone, remove it.
if (itr->second.find ("Work") != string::npos) {
phonemap.erase (itr) ;
break;
}
++itr;
} while (itr != phonemap.upper bound("Tom")) ;

}

This sequence works by finding the first matching element with the key "Tom". It then uses
a loop that checks all elements with the key "Tom" to see if one of them contains the work
phone number. In the list, work numbers are preceded by the substring "Work", so each
value is checked to see if it contains the "Work" substring. If it does, the entry is removed
and the loop terminates.

Sometimes, it's useful to know the start and end points of a set of elements that share a
key. To accomplish this, use equal_range(), shown here:

pair<iterator, iterator> equal_range(const key_type &k)

It returns a pair object that contains iterators that point to the lower bound (in the first field)
and the upper bound (in the second field) in the multimap for the specified key. (A const
version of the function is also supplied.) Although all associative containers provide equal
range(), it is most useful with those that allow duplicate keys. Recall that the lower bound
is the first element that has a key that is equal to or greater than k, and the upper bound is
the first element that has a key greater than k. Assuming the preceding program, here is an
example that shows how equal_range() can be used to display all phone numbers for Tom:

multimap<string, string>::iterator itr;
pair<multimap<string, strings>::iterator,
multimap<string, string>::iterator> pr;

Chapter 3: Working with STL Containers 169

pr = phonemap.equal range ("Tom") ;
itr = pr.first;

cout << "Here are the numbers for Tom:\n";

while(itr != pr.second) ({
cout << itr->second << endl;
++itr;

}

'd

Use set and multiset

I Key Ingredients
Headers Classes Functions
<set> set size_type erase(const key_type &val)

iterator find(const key_type &val)
pair<iterator, bool>
insert(const value_type &val)

<set> multiset size_type erase(const key_type &val)
iterator find(const key_type &val)
pair<iterator, bool>
insert(const value_type &val)

iterator upper_bound(const key_type &val)
const

This recipe demonstrates set and multiset. The set containers are similar to maps, except
that the key and the value are not separated from each other. That is, sets store objects in
which the key is part of the value. In fact, if you use a set to store one of the built-in types,
such as an integer, the key and value are one and the same. Sets provide very efficient
containers when there is no need to separate the key from the data. The set container
requires that all keys be unique. The multiset container allows duplicate keys. Aside from
this difference, both set and multiset work in similar ways.

Because set and multiset store objects in which the key and the value are inseparable,
you might initially think that applications for set and multiset are quite limited. In fact,
when storing simple types, such as int or char, a set simply creates a sorted list. However,
the power of sets becomes apparent when objects are stored. In this case, the object's key is
determined by the < and/or == operator defined for the class. Therefore, the object's key
might consist of only one part of the object. This means that set can provide a very efficient
means to store objects that are retrieved based on the value of a field defined by the object.
For example, you might use set to store objects that hold employee information, such as

170

Herb Schildt's C++ Programming Cookbook

name, address, phone number, and an ID number. In this case, the ID number could be used
as a key. Because the main use of set and multiset is to hold objects rather than simple
values, this is the focus of this recipe.

NOTE The techniques needed for set and multiset are similar to those used for map and
multimap, and those discussions are not repeated here. For general information on using
associative containers, see Basic Associative Container Techniques. Also see Use map and
Use multimap for related information.

Step-by-Step

To use set involves the following steps:

1. Create a set instance of the desired type.
2. Add elements to the set by calling insert(). Each element's key must be unique.
3. Find a specific element in a set by calling find().

4. Remove an element with a specified key by calling erase().
To use multiset involves the following steps:

1. Create a multiset instance of the desired type.
2. Add elements to the set by calling insert(). Duplicate keys are allowed.
3. Find all elements with a specified key by using find() and upper_bound().

4. Remove all elements that have the same key by using erase().

Discussion

The set class supports a set in which unique keys are stored in ascending order. Its template
specification is shown here:

template <class Key, class Comp = less<Key>,
class Allocator = allocator<Key> > class set

Here, Key is the data type of the keys (which also contain the data) and Comp is a function
that compares two keys. The set class has the following constructors:

explicit set(const Comp &cmpfn = Comp(),
const Allocator &alloc = Allocator())

set(const set<Key, Comp, Allocator> &ob)

template <class Inlter> set(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
const Allocator &alloc = Allocator())

The first form constructs an empty set. The second form is set's copy constructor. The third
form constructs a set that contains the elements specified by the range start to end-1. The
function specified by cmpfn, if present, determines the ordering of the set. By default, less is
used. To use set, you must include <set>.

Chapter 3: Working with STL Containers 171

The multiset class supports a set in which duplicate keys are allowed. Its template
specification is shown here:

template <class Key, class Comp = less<Key>,
class Allocator = allocator<Key> > class multiset

Here, Key is the data of the keys and Comp is a function that compares two keys. The
multiset class has the following constructors:

explicit multiset(const Comp &cmpfn = Comp(),
const Allocator &alloc = Allocator())

multiset(const multiset<Key, Comp, Allocator> &ob)

template <class Inlter> multiset(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
const Allocator &alloc = Allocator())

The first form constructs an empty multiset. The second form constructs a multiset that
contains the same elements as ob. The third form constructs a multiset that contains the
elements specified by the range start to end—1. The function specified by cmpfn, if present,
determines the ordering of the set. By default, less is the comparison function. The header
for multiset is also <set>.

Both set and multiset support bidirectional iterators. Thus, the containers can be accessed
through an iterator in both the forward and reverse directions, but random-access operations
are not supported.

The insert(), erase(), and find() functions are described in Basic Associative Container
Techniques. Here is a brief review of the forms used by this recipe. When used with set, this
version of insert()

pair<iterator, bool> insert(const value_type &uval)

will fail if val contains a key that is already in the container. (In this case, false is returned in
the second field of the pair object and an iterator to the previously existing element is
returned in the first field.) When used with multiset, insert() will always succeed. In both
cases, when insert() succeeds, the first field of the returned pair object will contain an
iterator that points to the object inserted.

When used with set, this form of erase()

size_type erase(const key_type &uval)

removes the element whose key matches val. When used with multiset, it removes all
elements whose keys match val. In both cases, the number of elements removed is returned.
The find() function is shown next:

iterator find(const key_type &uval)

For set, it returns an iterator to the element whose key matches val. For multiset, it returns
an iterator to the first element whose key matches val. To find all elements with matching
keys, use upper_bound() to establish the upper limit. All elements between the one pointed
to by find() and the one pointed to by upper_bound() will contain matching keys.

172

Herb Schildt's C++ Programming Cookbook

As explained in Store User-Defined Objects in a Container, in general, for an object to be
stored in associative container, its class must overload the < operator. This is because
associative containers are ordered by using the < operator. The < operator is also used by the
find(), upper_bound(), lower_bound(), and equal_range() functions. Thus, the secret to
using set to store class objects is to correctly overload operator<(). Typically, the < operator
is defined in such a way that only one member of the class is compared. This member, thus,
forms the key, even though the entire class forms the element. In some cases, you will also
need to define operator==().

NOTE It has been my experience that there is some variation among compilers in precisely what
operators and functions a class must define in order for instances of that class to be stored in a
container. This is especially true for older compilers. As a result, you might find that additional
operators need to be overloaded.

Example

The following example shows set in action. It is used to store objects that contain employee
information. The employee's ID is used as the key. Therefore, operator<() is implemented
so that it compares IDs. Notice that operator==() is also implemented. This operator is not
necessary for the following program, but is needed by some algorithms, such as find().
Therefore, it is included for completeness. (Remember, depending upon implementation
and use, other functions may need to be defined.)

// Demonstrate set.

//

// This example stores objects that contain employee
// information. The employee's ID is used as the key.

#include <iostream>
#include <set>
#include <string>

using namespace std;

// This class stores employee information.
class employee {

string name;

string ID;

string phone;

string department;

public:
// Default constructor.
employee() { ID = name = phone = department = ""; }

// Construct temporary object using only the ID, which is the key.
employee (string id) { ID = id;
name = phone = department = ""; }

// Construct a complete employee object.
employee (string n, string id, string dept, string p)

Chapter 3: Working with STL Containers 173

name = n;
ID = id;

phone = p;
department = dept;

}

// Accessor functions for employee data.
string get name() { return name; }
string get_id() { return ID; }

string get dept() { return department; }
string get phone() { return phone; }

Vi

// Compare objects using ID.
bool operator< (employee a, employee b)

{

return a.get_id() < b.get_id();

}

// Check for equality based on ID.
bool operator==(employee a, employee b)

{
}

// Create an inserter for employee.
ostream &operator<< (ostream &s, employee &O)

{

return a.get_id() == b.get_id();

S << o.get name() << endl;
S << "Emp#: " << o.get_id() << endl;
s << "Dept: " << o.get_dept() << endl;
S << "Phone: " << o.get phone() << endl;
return s;

int main()

{

set<employee> emplist;

// Initialize the employee list.

emplist.insert (employee ("Tom Harvy", "9423",

"Client Relations", "555-1010"));
emplist.insert (employee ("Susan Thomasy", "8723",

"Sales", "555-8899")) ;
emplist.insert (employee ("Alex Johnson", "5719",

"Repair", "555-0174"));

// Create an iterator to the set.
set<employees>::iterator itr = emplist.begin() ;

174 Herb Schildt's C++ Programming Cookbook

// Display contents of the set.
cout << "Current set: \n\n";

do {
cout << *itr << endl;
++itr;
} while(itr != emplist.end());

cout << endl;

// Find a specific employee.
cout << "Searching for employee 8723.\n";
itr = emplist.find(employee("8723")) ;
if (itr != emplist.end())
cout << "Found. Information follows:\n";
cout << *itr << endl;

}

return 0;

}
The output is shown here:
Current set:

Alex Johnson
Emp#: 5719
Dept: Repair
Phone: 555-0174

Susan Thomasy
Emp#: 8723
Dept: Sales
Phone: 555-8899

Tom Harvy

Emp#: 9423

Dept: Client Relations
Phone: 555-1010

Searching for employee 8723.
Found. Information follows:
Susan Thomasy

Emp#: 8723

Dept: Sales

Phone: 555-8899

Bonus Example: Use multiset to Store Objects with Duplicate Keys

As explained, the difference between set and multiset is that a set must contain unique
keys, but a multiset can store duplicate keys. In general, multiset is handled in the same
way as multimap. For example, to find all elements with a given key, call find() to obtain
an iterator to the first matching key. Then increment that iterator to obtain the next element
until the iterator is equal to the upper bound. (See Use multimap for a detailed description

Chapter 3: Working with STL Containers 175

of this technique.) A similar mechanism is used to find a specific element. Find the first
matching key. Then search for the specific element within the bounded range.

The following program demonstrates how a multiset can store elements with duplicate
keys. It reworks the preceding example so that the key is the department rather than the ID.
This means that operator<() is changed to compare department names rather than IDs. The
program then displays all employees in the Repair department. It ends by showing the
information for Cary Linus in the Repair department.

// Demonstrate multiset.

//

// This example stores objects that contain employee
// information. In this example, the department name
// 1s used as the key.

#include <iostream>
#include <set>
#include <string>

using namespace std;

// This class stores employee information.
class employee {

string name;

string ID;

string phone;

string department;

public:
// Default constructor.
employee() { ID = name = phone = department = ""; }

// Construct temporary object using only the department,
// which is the key.
employee (string d) { department = d;

name = phone = ID = ""; }

// Construct a complete employee object.
employee (string n, string id, string dept, string p)

name = n;
ID = id;
phone = p;
department = dept;
1

// Accessor functions for employee data.
string get _name() { return name; }
string get _id() { return ID; }

string get dept() { return department; }
string get phone() { return phone; }

176 Herb Schildt's C++ Programming Cookbook

// Compare objects using department.
bool operator< (employee a, employee b)

{

return a.get dept() < b.get dept();

}

// Create an inserter for employee.
ostream &operator<< (ostream &s, employee &oO)

{

s << o.get name() << endl;
S << "Emp#: " << o.get _id() << endl;
S << "Dept: " << o.get_dept() << endl;
s << "Phone: " << o.get_phone() << endl;
return s;

}

int main ()

{

multiset<employee> emplist;

// Initialize the employee list.

emplist.insert (employee ("Tom Harvy", "9423",

"Client Relations", "555-1010")) ;
emplist.insert (employee ("Susan Thomasy", "8723",

"Sales", "555-8899")) ;
emplist.insert (employee ("Alex Johnson", "5719",

"Repair", "555-0174"));
emplist.insert (employee ("Cary Linus", "0719",

"Repair", "555-0175"));

// Declare an iterator to the multiset.
multiset<employee>::iterator itr = emplist.begin() ;

// Display contents of the multiset.
cout << "Current set: \n\n";

do {
cout << *itr << endl;
++itr;
} while(itr != emplist.end());

cout << endl;
// Find all employees in the Repair department.

cout << "All employees in the Repair department:\n\n";
employee e ("Repair"); // temporary object that contains the Repair key.

itr = emplist.find(e);
if (itr != emplist.end())
do {

Chapter 3:
cout << *itr << endl;
++1itr;
} while(itr != emplist.upper bound(e)) ;

}

// Now find Cary Linus in Repair.

Working with STL Containers

cout << "Looking for Cary Linus in Repair:\n";

itr = emplist.find(e);

if (itr != emplist.end())
do {
if (itr->get name() == "Cary Linus") ({

cout << "Found:\n";
cout << *itr << endl;
break;
1
++1itr;
} while(itr != emplist.upper bound(e)) ;

}

return 0O;

}

The output is shown here:
Current set:

Tom Harvy

Emp#: 9423

Dept: Client Relations
Phone: 555-1010

Alex Johnson
Emp#: 5719
Dept: Repair
Phone: 555-0174

Cary Linus
Emp#: 0719
Dept: Repair
Phone: 555-0175

Susan Thomasy
Emp#: 8723
Dept: Sales
Phone: 555-8899

All employees in the Repair department:

Alex Johnson
Emp#: 5719
Dept: Repair
Phone: 555-0174

1

178

Herb Schildt's C++ Programming Cookbook

Cary Linus
Emp#: 0719
Dept: Repair
Phone: 555-0175

Looking for Cary Linus in Repair:
Found:

Cary Linus

Emp#: 0719

Dept: Repair

Phone: 555-0175

Options and Alternatives

Like all associative containers, both set and multiset define three versions of erase(). One is
described by the recipe. The other forms are shown here:

void erase(iterator i)
void erase(iterator start, iterator end)

The first form removes the element pointed to by i. The second form removes the elements
in the range start to end-1. These forms are especially helpful when you want to remove a
specific element from a multiset. As explained, the form of erase() used by the recipe
removes all elements whose keys match a specified key. Because a multiset allows more
than one element to have the same key, if you want to remove a specific element, then you
will need to find that element and remove it by using erase(iterator). (See Use multimap for
an example that uses this approach.)

The set and multiset containers also support the three standard forms of insert(). These
include the one used by the recipe and the two forms shown here:

iterator insert(iterator 7, const value_type &uval)
template <class Inlter> void insert(Inlter start, Inlter end)

For multiset, the first form inserts val into the container. For set, val is inserted if it does not
contain a duplicate key. In all cases, an iterator to the element with the same key is returned.
The iterator specified by i indicates where to start the search for the proper insertion point.
Because sets are sorted based on keys, you should try to use a value for i that is close to the
insertion point. The second version inserts the elements in the range start to end-1. Of
course, when used with set, elements with duplicate keys are not inserted.

When using a multiset, it is sometimes useful to know the start and end points of a
range of elements that share a key. To accomplish this, use equal_range(), shown here:

pair<iterator, iterator> equal_range(const key_type &k)

It returns a pair object that contains iterators that point to the lower bound (in the first field)
and the upper bound (in the second field) in the multiset for the specified key. (A const
version of the function is also supplied.) Recall that the lower bound is the first element that
has a key that is equal to or greater than k, and the upper bound is the first element that has
a key greater than k. Thus, equal_range() returns iterators to the range of elements that all
share a common key.

Chapter 3: Working with STL Containers 179

If you want to store a set of bits, consider the bitset class. It uses the header <bitset>
and it creates a specialized container for bit values. The bitset class is not, however, a fully
formed container and is not part of the STL. For some applications, however, bitset might
be a better choice than a full-featured, STL container.

Although set and multiset are very useful in some applications, I have come to prefer
map and multimap for two reasons. First, they provide the quintessential implementations
of containers that hold key/value pairs because the key is separate from the value. Second,
the key can change without requiring a change to the implementation of operator<() in the
objects being stored. Of course, in all cases, you must use the container that provides the
best fit for your application.

This page intentionally left blank

CHAPTER

Algorithms, Function Objects,
and Other STL Components

these, containers and iterators, are the focus of Chapter 3. The primary focus of this

chapter is algorithms. Because of the large number of algorithms, it is not possible
to present a recipe for each one. Instead, the recipes show how to use algorithms to handle
a variety of common STL programming situations. These recipes also form a representative
sample of techniques that can be generalized to other algorithms. Therefore, if you don't
find a recipe that directly describes what you want to do, you can probably adapt one. This
chapter also includes recipes that demonstrate other key parts of the STL, including function
objects, binders, and negators. There are also recipes that demonstrate a function adaptor,
three iterator adaptors, and the stream iterators.

Here are the recipes contained in this chapter:

ﬁ t its foundation, the STL consists of containers, iterators, and algorithms. Two of

¢ Sort a Container

¢ Find an Element in a Container

¢ Use search() to Find a Matching Sequence

* Reverse, Rotate, and Shuffle a Sequence

® Cycle Through a Container with for_each()

¢ Use transform() to Change a Sequence

¢ Perform Set Operations

¢ Permute a Sequence

¢ Copy a Sequence from One Container to Another
* Replace and Remove Elements in a Container
¢ Merge Two Sorted Sequences

¢ Create and Manage a Heap

¢ Create an Algorithm

¢ Use a Built-In Function Object

181

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

182 Herb Schildt's C++ Programming Cookbook

¢ Create a Custom Function Object

¢ Use a Binder

¢ Use a Negator

¢ Use the Pointer-to-Function Adaptor
¢ Use the Stream Iterators

¢ Use the Insert Iterator Adaptors

Algorithm Overview

Algorithms expand the power and reach of the STL by providing a common base of
functionality that is available to all containers. They also offer ready-to-use solutions to
several difficult programming tasks. For example, there are algorithms that search one
sequence for an occurrence of another, that sort a sequence, or that apply a transformation to
a sequence. In combination with containers and iterators, they define the essence of the STL.

Why Algorithms?

Algorithms are one of the three major components of the STL, and they offer functionality
not provided by the containers themselves. As the preceding chapter has shown, the
container classes include a number of functions that support a wide variety of operations.
This fact gives rise to the following question: Why are separate algorithms needed? The
answer to this question has three parts.

First, algorithms allow two different types of containers to be operated on at the same
time. Because most algorithms operate through iterators, iterators to different types of
containers can be used by the same algorithm. For example, the merge() algorithm can be
used to merge a vector with a list.

Second, algorithms contribute to the extensibility of the STL. Because an algorithm can
operate on any type of container that meets its minimum requirements, it is possible to create
new containers that can be manipulated by the standard algorithms. As long as a container
supports iterators (which all containers must), it can be used by the STL algorithms. It is also
possible to create new algorithms. As long as the new algorithm operates through iterators, it
can be applied to any container.

Third, algorithms streamline the STL. Because they provide operations that can be applied
to a wide range of containers, this functionality need not be duplicated by the member
functions of each container. They also give you, the programmer, a consistent way to perform
an operation that can be applied to any type of container.

Algorithms Are Template Functions
The STL algorithms are template functions. This means that they can be applied to any type of
container. With very few exceptions, the algorithms operate through iterators. (The exceptions
use reference parameters.) All of the STL algorithms require the header <algorithm>.

In the algorithm descriptions found throughout this chapter, the following generic
iterator type names are used:

Chapter 4: Algorithms, Function Objects, and Other STL Components 183

Generic Name Represents

Bilter Bidirectional iterator
Forlter Forward iterator

Inlter Input iterator

Outlter Output iterator
Randlter Random-access iterator

Not all algorithms will work with all types of iterators. For example, the sort() algorithm
requires random-access iterators. This means that sort() cannot be used on list containers,
for example. (This is why list provides its own function to sort lists.) When choosing an
algorithm, you must make sure that the container on which it will be operating provides the
necessary iterators.

In addition to iterators, the algorithm prototypes often specify various other generic
type names, which are used to represent predicates, comparison functions, etc. The ones
used in this chapter are shown here:

T Some type of data

Size Some type of integer

Func Some type of function

Generator A function that generates objects
BinPred Binary predicate

UnPred Unary predicate

Comp Comparison function

The Algorithm Categories

The STL defines a large number of algorithms, and it is common to group them by category.
There are many ways to do this. One way is the categories used by the International
Standard for C++, which are shown here:

* Non-modifying sequence operations
* Modifying sequence operations

* Sorting and related operations

Tables 4-1 through 4-3 show the algorithms that comprise each of these categories. The
non-modifying sequence operations do not alter the containers upon which they operate.
The modifying operations do. The sorting category includes the various sort algorithms as
well as those algorithms that require a sorted sequence or that in one way or another order
a sequence.

While the categories defined in the C++ Standard are useful, they each still contain a
large number of algorithms. Another way to organize the algorithms is into smaller,
functional groupings, such as those shown in Table 4-4.

Herb Schildt's C++ Programming Cookbook

Algorithm Purpose

adjacent_find Searches for adjacent matching elements within a sequence and returns
an iterator to the first match.

count Returns the number of elements in the sequence.

count_if Returns the number of elements in the sequence that satisfy some
predicate.

equal Determines if two ranges are the same.

find Searches a range for a value and returns an iterator to the first occurrence
of the element.

find_end Searches a range for a subsequence. It returns an iterator to the last
occurrence of the subsequence within the range.

find_first_of Finds the first element within a sequence that matches an element within
a range.

find_if Searches a range for an element for which a user-defined unary predicate
returns true.

for_each Applies a function to a range of elements.

mismatch Finds the first mismatch between the elements in two sequences. Iterators
to the two elements are returned.

search Searches for a subsequence within a sequence.

search_n Searches for a sequence of a specified number of similar elements.

TaBLe 4-1 Non-Modifying Sequence Algorithms

Function Object Overview

Function objects are classes that define operator(). A function object can often be used in
place of a function pointer, such as when passing a predicate to an algorithm. Function
objects offer more flexibility than do function pointers, and can be more efficient in some
situations. Many built-in function objects, such as less and minus, are provided by the STL.
You can also define your own.

There are two types of function objects: unary and binary. A unary function object
requires one argument; a binary function object requires two. You must use the type of
object required. For example, if an algorithm is expecting a binary function, you must pass
it a binary function object.

The built-in binary function objects are shown here:

plus minus multiplies divides modulus
equal_to not_equal_to greater greater_equal less
less_equal logical_and logical_or

Chapter 4:

Algorithms, Function Objects, and Other STL Components

Algorithm

Purpose

copy

Copies a sequence.

copy_backward

Same as copy(), except that it moves the elements from the end of the
sequence first.

fill Fills a range with the specified value.

fill_n Assigns a specific number of elements with a specified value.

generate Assigns elements in a range the values returned by a generator function.

generate_n Assigns a specified number of elements the values returned by a
generator function.

iter_swap Exchanges the values pointed to by its two iterator arguments.

partition Arranges a sequence such that all elements for which a predicate returns

true come before those for which the predicate returns false.

random_shuffle

Randomizes a sequence.

replace

Replaces elements in a sequence.

replace_copy

Replaces elements while copying.

replace_copy_if

While copying, replaces elements for which a user-defined unary predicate
is true.

replace_if

Replaces elements for which a user-defined unary predicate is true.

remove

Removes elements from a specified range.

remove_copy

Removes and copies elements from a specified range.

remove_copy._if

While copying, removes elements from a specified range for which
a user-defined unary predicate is true.

remove_if Removes elements from a specified range for which a user-defined unary
predicate is true.
reverse Reverses the order of a range.

reverse_copy

Reverses the order of a range while copying.

rotate

Left-rotates the elements in a range.

rotate_copy

Left-rotates the elements in a range while copying.

stable_partition

Arranges a sequence such that all elements for which a predicate
returns true come before those for which the predicate returns false.
The partitioning is stable. This means that the relative ordering of the
sequence is preserved.

swap

Exchanges two values.

swap_ranges

Exchanges elements in a range.

transform Applies a function to a range of elements and stores the outcome in a
new sequence.

unique Eliminates duplicate elements from a range.

unique_copy Eliminates duplicate elements from a range while copying.

TaBLe 4-2 Modifying Sequence Operations

185

186

Herb Schildt's C++ Programming Cookbook

Algorithm Purpose

binary_search Performs a binary search on an ordered sequence.

equal_range Returns a range in which an element can be inserted into a sequence
without disrupting the ordering of the sequence.

includes Determines if one sequence includes all of the elements in another

sequence.

inplace_merge

Merges a range with another range. Both ranges must be sorted in
increasing order. The resulting sequence is sorted.

lexicographical_compare

Lexicographically compares one sequence with another.

lower_bound Finds the first point in the sequence that is not less than a specified
value.

make_heap Constructs a heap from a sequence.

max Returns the maximum of two values.

max_element

Returns an iterator to the maximum element within a range.

merge Merges two ordered sequences, placing the result into a third
sequence.

min Returns the minimum of two values.

min_element Returns an iterator to the minimum element within a range.

next_permutation

Constructs the next permutation of a sequence.

nth_element

Arranges a sequence such that all elements less than a specified
element E come before that element and all elements greater than E
come after it.

partial_sort

Sorts a range.

partial_sort_copy

Sorts a range and then copies as many elements as will fit into a
result sequence.

pop_heap

Exchanges the first and last—1 elements and then rebuilds the heap.

prev_permutation

Constructs the previous permutation of a sequence.

push_heap

Pushes an element onto the end of a heap.

set_difference

Produces a sequence that contains the difference between two
ordered sets.

set_intersection

Produces a sequence that contains the intersection of two ordered
sets.

set_symmetric_difference

Produces a sequence that contains the symmetric difference between
two ordered sets.

set_union Produces a sequence that contains the union of two ordered sets.
sort Sorts a range.

sort_heap Sorts a heap within a specified range.

stable_sort Sorts a range. The sort is stable. This means that equal elements are

not rearranged.

upper_bound

Finds the last point in a sequence that is not greater than some
value.

TaBLe 4-3 Sorting and Related Algorithms

Chapter 4: Algorithms, Function Objects, and Other STL Components
Copying
copy copy_backward iter_swap fill
fill_n swap swap_ranges
Searching Unsorted Sequences
adjacent_find equal find find_end
find_if find_first_of mismatch search
search_n

Replacing and Removing Elements

remove remove_if remove_copy remove_copy_if
replace replace_if replace_copy replace_copy_if
unique unique_copy

Reordering a Sequence

rotate rotate_copy

random_shuffle

partition

reverse reverse_copy

stable_partition

next_permutation

prev_permutation

Sorting and Searching a Sorted Sequence

nth_element sort

stable_sort

partial_sort

partial_sort_copy binary_search

lower_bound

upper_bound

equal_range

Merging Sorted Sequences

merge inplace_merge

Set Operations

includes set_difference set_intersection set_symmetric_difference
set_union

Heap Operations

make_heap ‘ push_heap ‘ pop_heap ‘ sort_heap

Minimum and Maximum

max ‘ max_element ‘ min ‘ min_element
Transforming and Generating a Sequence

generate ‘ generate_n ‘ transform ‘

Miscellaneous

count ‘ count_if ‘ for_each ‘ lexicographical_compare

TaBLE 4-4 The STL Algorithms Organized by Functional Groupings

181

188

Herb Schildt's C++ Programming Cookbook

Here are the unary function objects:

logical_not negate

All of the built-in function objects are template classes that overload operator(). Because
they are template classes, they can work on any type of data for which their associated
operation is defined. The built-in function objects use the header <functional>.

Although it is certainly permissible to construct a function object in advance, often, you
will construct a function object when it is passed to an algorithm. You do this by explicitly
calling its constructor using the following general form:

func_ob<type>()
For example,

sort (start, end, greater<ints>())

constructs a greater object for use on operands of type int and passes it to the sort()
algorithm.

There is a special type of function object called a predicate. The defining characteristic of
a predicate is that it returns a bool value. In other words, a predicate returns a true/false
result. There are unary and binary predicates. A unary predicate takes one argument. A
binary predicate takes two arguments. There is a special type of predicate that performs a
less-than comparison, returning true only if the one element is less than another. Such a
predicate is sometimes called a comparison function.

Binders and Negators Overview

As explained in the previous section, a binary function object takes two parameters. Normally,
these parameters receive values from the sequence or sequences upon which the object is
operating. There will be times, however, in which you will want one of the values to be bound
to a specific value. For example, you might want to use less to compare elements from a
sequence against a specified value. To handle this type of situation, you will use a binder. The
STL provides two binders: bind1st() and bind2nd(). bind1st() binds a value to the first
argument of a binary function object. bind2nd() binds a value to the second argument of a
binary function object.

Related to a binder is the negator. The negators are not1() and not2(). They return the
negation (i.e., the complement) of whatever predicate they modify.

Chapter 4: Algorithms, Function Objects, and Other STL Components

'

Sort a Container

I Key Ingredients
Headers Classes Functions
<algorithm> template<class Randlter>

void sort(Randlter start, Randlter end)

template<class Randlter, class Comp>
void sort(Randlter start, Randlter end,

Comp cmpfn)

One of the more common container operations is sorting. The reason for this is easy to
understand: Sequence containers are not required to maintain their elements in sorted order.
For example, neither vector nor deque maintain a sorted container. Therefore, if you want
the elements of one of these containers to be in sorted order, you will need to sort it
yourself. Fortunately, it is easy to sort one of these containers by using the sort() algorithm.
The container can be sorted in natural order or in an order determined by a comparison
function. This recipe describes the process and offers three interesting alternatives.

Step-by-Step

To sort a container in natural order uses only one step:

1. Call the two-parameter form of sort(), passing in iterators to the beginning and end
of the range to be sorted.

To sort a container in an order determined by a comparison function that you provide
involves these steps:

1. If you will be sorting based on a comparison function that you provide, create the
comparison function.

2. Call the three-parameter form of sort(), passing in iterators to the beginning and
end of the sequence and to the comparison function.

Discussion
The STL provides several sorting algorithms. At the core is sort(), shown here:

template <class RandlIter>
void sort(Randlter start, Randlter end)

template <class RandlIter, class Comp>
void sort(Randlter start, Randlter end, Comp cmpfn)

The sort() algorithm sorts the range start through end-1. The second form allows you to
pass a comparison function to crmpfn that determines when one element is less than another.

189

190

Herb Schildt's C++ Programming Cookbook

This function can be passed via a function pointer or as a function object, such as greater().
(See Use a Built-In Function Object for a recipe that discusses the function objects. See Create a
Custom Function Object for details on creating your own function object.)

Notice that sort() requires random-access iterators. Only a few containers, such as
vector and deque, support random-access iterators. Those containers, such as list, which do
not, must provide their own sort routines.

It is important to understand that sort() sorts the range specified by its arguments,
which need not include the entire contents of the container. Thus, sort() can be used to sort
a subset of a container. To sort an entire container, you must specify begin() and end() as
the starting and ending points.

Example

The following example shows both versions of sort() in action. It creates a vector and then
sorts it into natural order. It then uses the standard greater() function object to sort the
vector into descending order. Finally, it re-sorts the center 6 elements into natural order.

// Demonstrate the sort() algorithm

#include <cstdlib>
#include <iostream>
#include <vectors>
#include <functionals>
#include <algorithms>

using namespace std;
void show(const char *msg, vector<ints> vect);
int main ()
{ vector<int> v (10) ;
// Initialize v with random values.
for (unsigned i=0; i < v.size(); i++)

v[i] = rand() % 100;

show ("Original order:\n", v);
cout << endl;

// Sort the entire container.
sort (v.begin(), v.end());

show ("Order after sorting into natural order:\n", v);
cout << endl;

// Now, sort into descending order by using greater().
sort (v.begin(), v.end(), greater<ints>());

show ("Order after sorting into descending order:\n", v);
cout << endl;

Chapter 4: Algorithms, Function Objects, and Other STL Components

// Sort a subset of the container
sort (v.begin()+2, v.end()-2);

show ("After sorting elements v[2] to v[7] into natural order:\n", v);

return O;

}

// Display the contents of a vector<ints.
void show (const char *msg, vector<ints> vect) {
cout << msg;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}
The output is shown here:

Original order:
41 67 34 0 69 24 78 58 62 64

Order after sorting into natural order:
0 24 34 41 58 62 64 67 69 78

Order after sorting into descending order:
78 69 67 64 62 58 41 34 24 0

After sorting elements v[2] to vI[7] into natural order:
78 69 34 41 58 62 64 67 24 0

Options and Alternatives
An interesting variation on sorting is found in partial_sort(). It has the two versions shown
here:

template <class RandIter>
void partial_sort(Randlter start, RandlIter mid, Randlter end)

template <class RandlIter, class Comp>
void partial_sort(Randlter start, RandlIter mid, Randlter end, Comp cmpfn)

The partial_sort() algorithm sorts elements from the range start to end-1. However, after
execution, only elements in the range start to mid-1 will be in sorted order. The remainder is
in an arbitrary order. Thus, partial_sort() examines all elements from start to end, but orders
only mid-start elements from the entire range, and these elements are all less than the
remaining, unordered elements. You might use partial_sort() to obtain the top 10 selling
songs from the list of all songs provided by an online music service, for example. The
second form allows you to specify a comparison function that determines when one element
is less than another. Assuming the example program, the following fragment sorts the first
five elements of v:

partial sort(v.begin(), v.begin()+5, v.end());

191

192 Herb Schildt's C++ Programming Cookbook

After this statement executes, the first 5 elements in v will be in sorted order. The remaining
elements will be in an unspecified order.

A useful variation on partial sorting is partial_sort_copy(), which puts the sorted
elements into another sequence. It has the following two versions:

template <class Inlter, class RandIter>
RandlIter partial_sort_copy(Inlter start, Inlter end,
Randlter result_start, Randlter result_end)

template <class Inlter, class Randlter, class Comp>
RandlIter partial_sort_copy(Inlter start, Inlter end,
Randlter result_start, Randlter result_end,

Comp cmpfn)

Both sort the range start to end—1 and then copy as many elements as will fit into the result
sequence defined by result_start to result_end—1. An iterator to one past the last element
copied into the resulting sequence is returned. The second form allows you to specify a
comparison function that determines when one element is less than another.

Another sorting option is stable_sort(), which provides a sort that does not rearrange
equal elements. It has these two forms:

template <class RandIter>
void stable_sort(Randlter start, RandIter end)

template <class RandlIter, class Comp>
void stable_sort(Randlter start, Randlter end, Comp cmpfn)

It sorts the range start through end-1, but equal elements are not rearranged. The second
form allows you to specify a comparison function that determines when one element is less
than another.

”~

Find an Element in a Container

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Inlter, class T>

Inlter find(Inlter start, Inlter end,
const T &val)
template <class Inlter, class UnPred>
Inlter find_if(Inlter start, Inlter end,
UnPred pfn)

Chapter 4: Algorithms, Function Objects, and Other STL Components

Frequently, you will want to find a specific element within a container. For example, you
might want to find an element so that it can be deleted, viewed, or updated with new
information. Whatever the need, the STL provides several algorithms that in one way or
another enable you to find a specific element within a container. This recipe looks at two:
find() and find_if(), but several others are described in the Options and Alternatives section
for this recipe. The principal advantage of find() and find_if() is that they do not require
that the container be sorted. Thus, they work in all cases.

Step-by-Step
To use find() to find an element within a container involves these steps:

1. Create an instance of the object that you want to find.

2. Call find(), passing in iterators to the range to search and the object to find.
To use find_if() to find an element within a container involves these steps:

1. Create a unary predicate that returns true when the desired object is found.

2. Call find_if(), passing in iterators to the range to sort and the predicate from Step 1.

Discussion

Perhaps the most widely used search algorithms are find() and its close relative, find_if().
The find() algorithm searches a range for the first occurrence of a specified element. It is
shown here:

template <class Inlter, class T>
Inlter find(Inlter start, Inlter end, const T &uval)

It searches the range start to end-1 for the value specified by val. It returns an iterator to the
first occurrence of the element or to end if val is not in the range.

The find_if() algorithm searches a range for the first occurrence of an element that
meets the conditions specified by a predicate. It is shown here:

template <class Inlter, class UnPred>
Inlter find_if(Inlter start, Inlter end, UnPred pfn)

It searches the range start to end—1 for an element for which the unary predicate pfn returns
true. It returns an iterator to the first element that satisfies pfn, or to end if val is not in the
range. This algorithm is particularly useful when you want to search for an element that
meets a certain criterion. For example, if a container holds a mailing list, you could use
find_if() to find addresses that have a specific postal code.

Both find() and find_if() can operate on an unsorted range. This means that they can
be used on any type of container and there is no need for the container to be maintained in
sorted order. They will also work with a sorted container, but better search algorithms exist
for sorted containers. See the Options and Alternatives section in this recipe for examples.

193

194 Herb Schildt's C++ Programming Cookbook

Example

The following example illustrates both find() and find_if(). It uses a vector to hold strings.
It then uses find() to find the first string that matches "two". It then uses find_if() to find

a string that has 3 or fewer characters.

// Demonstrate the find() and find if() algorithms.

#include <iostream>
#include <vectors>
#include <algorithms>
#include <strings>

using namespace std;
bool is_short str(string str);
int main()

{

vector<string> v;
vector<string>::iterator itr;

.push_back 'flve");
.push_back ("six") ;

v.push back ("one") ;
v.push back ("two") ;
v.push back ("three");
v.push back ("four") ;
v (

v (

cout << "Contents of v: ";

for (unsigned i=0; i < v.size(); ++1)
cout << v[i] << " ";

cout << "\n\n";

// Find the element that contains "two".
cout << "Searching for \"two\"\n";

itr = find(v.begin(), v.end(), "two");

if (itr != v.end()) {
cout << "Found \"two\", Replacing with \"TWO\"\n";
*itr = "TWO";

1

cout << endl;

// Find all strings that are less than 4 characters long.
cout << "Searching for all strings that have 3 or fewer characters.\n";
itr = v.begin() ;

do {
itr = find if (itr, v.end(), is_short str);
if (itr != v.end()) {
cout << "Found " << *itr << endl;
++itr;

}

} while(itr != v.end());

Chapter 4: Algorithms, Function Objects, and Other STL Components

return O;

}

// Return true if the string is 3 characters or less.
bool is_short str(string str)

{

if (str.size() <= 3) return true;
return false;

}
The output is shown here:

Contents of v: one two three four five six

Searching for "two"
Found "two", Replacing with "TWO"

Searching for all strings that have 3 or fewer characters.
Found one
Found TWO
Found six

In the program, notice how find_if() is used in a loop to enable all strings that have 3 or
fewer characters to be found. Each search begins where the previous one left off. This is
possible because find_if() returns an iterator to the found element. This iterator can then be
incremented and used to begin the next search. Remember, both find() and find_if() (and
nearly all other algorithms) operate on a specified range of elements, rather than on the
entire contents of the container. This makes these algorithms far more versatile than they
would otherwise be.

Bonus Example: Extract Sentences from a Vector of Characters

Although the preceding example shows the mechanics of find_if(), it does not show its

full potential. By carefully crafting a predicate, you can use find_if() to perform very
sophisticated search operations. For example, your predicate can maintain state information
that is used to find elements based on context. The following program presents a simple
case study. It uses find_if() to extract sentences from a vector of characters. It uses a
predicate called is_sentence_start() to find the start of each sentence. This function
maintains state information that indicates when the end of a sentence has been reached.

// Extract sentences from a vector of chars with help from find if ().
#include <iostream>

#include <vector>

#include <algorithm>

#include <cstring>

#include <cctypes>

using namespace std;

bool is_ sentence_ start (char ch);

195

196

Herb Schildt's C++ Programming Cookbook

template<class InIter>
void show_ range(const char *msg, Inlter

int main ()

{

vector<char> v;
vector<chars>::iterator itr;

start, InIter end);

const char *str = "This is a test? Yes, it is! This too.";

for (unsigned i=0; i < strlen(str); i++)
v.push back(str[i]);

show_range ("Contents of v: ", v.begin(), v.end());

cout << endl;

// Find the beginning of all sentences.

cout << "Use find if() to display each sentence in v:\n";

// itr start will point to the start of a

sentence and

// itr end will point to the start of the next sentence.

vector<chars>::iterator itr start, itr end;

itr start = v.begin();
do {
// Find start of a sentence.
itr_start = find if (itr_start, v.end(),

// Find start of the next sentence.

is_sentence_ start);

itr end = find if (itr_ start, v.end(), 1s_sentence_ start);

// Show the sequence in between.

show _range("", itr_start, itr_end);
} while(itr _end != v.end());
return 0;

}

// Return true if ch is the first letter in
bool is_sentence start (char ch) ({
static bool endofsentence = true;

if (isalpha(ch) && endofsentence) {
endofsentence = false;
return true;

}

a sentence.

if(ch=='." || ch=='?' || ch=='!"') endofsentence = true;

return false;

Chapter 4: Algorithms, Function Objects, and Other STL Components

// Show a range of elements.
template<class InIters>
void show range (const char *msg, InIter start, InIter end) {

Inlter itr;
cout << msg;

for(itr = start; itr != end; ++itr)
cout << *itr;
cout << endl;

The output is shown here:
Contents of v: This is a test? Yes, it is! This too.

Use find if() to display each sentence in v:
This is a test?

Yes, it is!

This too.

Pay special attention to the way the predicate is_sentence_start() works. It looks for the
first letter after the end of a previous sentence. It uses a static bool called endofsentence to
indicate that the end of a sentence has been found. The end of a sentence is assumed if a
sentence-terminating character (a period, question mark, or exclamation mark) is
encountered. In this case, endofsentence is set to true. When endofsentence is true, then the
next letter in the sequence is assumed to be the start of the next sentence. When this occurs,
endofsentence is set to false and is_sentence_start() returns true. In all other cases,
is_sentence_start() returns false. Notice that endofsentence is true to begin with so that
the first sentence is found.

Options and Alternatives

To search for a sequence of elements, rather than one specific value, use the search()
algorithm. It is described by the following recipe.

If you are operating on a sorted sequence, then you can use a binary search to find a
value. In most cases, a binary search is much faster than a sequential search. It does, of
course, require a sorted sequence. The prototypes for binary_search() are shown here:

template <class Forlter, class T>
bool binary_search(Forlter start, Forlter end, const T &uval)
template <class Forlter, class T, class Comp>
bool binary_search(Forlter start, Forlter end, const T &val, Comp cmpfn)

The binary_search() algorithm performs a binary search on an ordered range start to

end-1 for the value specified by val. It returns true if val is found and false otherwise. The
first version compares the elements in the specified sequence for equality. The second
version allows you to specify your own comparison function. When acting on random-access
iterators, binary_search() consumes logarithmic time. For other types of iterators, the

197

198

Herb Schildt's C++ Programming Cookbook

number of comparisons is logarithmic, even though the time it takes to move between
elements is not.

You might be surprised by the fact that binary_search() returns a true/false result
rather than an iterator to the element that it finds. One justification for this approach is
based in the argument that a sorted sequence may contain two or more values that match
the one being sought. Thus, there is little value in returning the first one found. While the
validity of this argument has been a subject of debate, it is nevertheless the way that
binary_search() works.

To actually obtain an iterator to an element in a sorted sequence, you will use one of
these algorithms: lower_bound(), upper_bound(), or equal_range(). The prototypes for
the non-predicate versions of these algorithms are shown here:

template <class Forlter, class T>
pair<Forlter, Forlter> equal_range(Forlter start, Forlter end,
const T &wal)

template <class Forlter, class T>
Forlter lower_bound(Forlter start, Forlter end, const T &wval)

template <class Forlter, class T>
Forlter upper_bound(Forlter start, Forlter end, const T &val)

The lower_bound() algorithm returns an iterator to the first element that is equal to or
greater than val, upper_bound() returns an iterator one beyond the last matching element (in
other words, the first element greater than val), and equal_range() returns a pair of iterators
that point to the lower and upper bounds. All of these algorithms operate in logarithmic time
when acting upon random-access iterators because they, too, use a binary search to find their
respective values. For other types of iterators, the number of comparisons is logarithmic, even
though the time it takes to move between elements is not. In general, if you want to obtain an
iterator to the first matching element in a sorted sequence, use equal_range(). If the upper-
and lower-bound iterators differ, then you know that at least one matching element has been
found and the lower-bound iterator points to the first occurrence of the element.

Although finding a specific element is often what is needed, in some cases, you will
want to find the first occurrence of any element from a set of elements. One way to do this is
to use the find_first_of() algorithm, shown here:

template <class Forlterl, class Forlter2>
Forlter1 find_first_of(Forlterl start1, Forlterl endl,
Forlter2 start2, Forlter2 end?2)

template <class Forlterl, class Forlter2, class BinPred>
Forlter] find_first_of(Forlterl start1, Forlterl endl,
Forlter2 start2, Forlter2 end?2,

BinPred pfn)

It finds the first element within the range start1 through end1-1 that matches any element
within the range start2 through end2-1. It returns an iterator to the matching element or end1
if no match is found. The second form lets you specify a binary predicate that determines
when two elements are equal.

Chapter 4: Algorithms, Function Objects, and Other STL Components 199

An interesting algorithm that will be helpful in some cases is adjacent_find(). It
searches for the first occurrence of a matching pair of adjacent elements. Its two versions
are shown here:

template <class Forlter> Forlter adjacent_find(Forlter start, Forlter end)

template <class Forlter, class BinPred> Forlter adjacent_find(Forlter start, Forlter end,
BinPred pfn)

The adjacent_find() algorithm searches for adjacent matching elements within the range
start through end-1. It returns an iterator to the first element of the first matching pair. It
returns end if no adjacent matching elements are found. The second form lets you specify
a binary predicate that determines when two elements are equal.

Another interesting variation on searching is the mismatch() algorithm, which allows
you to find the first mismatch between two sequences. Its prototypes are shown here:

template <class Inlter], class Inlter2>
pair<Inlterl, Inlter2> mismatch(Inlter] start1, Inlter1 end1, Inlter2 start2)

template <class Inlter], class Inlter2, class BinPred>
pair<Inlter], Inlter2> mismatch(Inlterl start1, Inlter1 end1,
Inlter2 start2, BinPred pfn)

The mismatch() algorithm finds the first mismatch between the elements in the range start1
to end1-1 and the one beginning with start2. Iterators to the two mismatching elements are
returned. If no mismatch is found, then the iterators last1 and first2 + (last1-first1) are
returned. Thus, it is the length of the first sequence that determines the number of elements
tested. The second form allows you to specify a binary predicate that determines when one
element is equal to another. (The pair template class contains two fields, called first and
second, which hold the pair of iterators. See Chapter 3 for details.)

”~

Use search() to Find a Matching Sequence

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Forlterd, class Forlter2>

Forlterl search(Forlterl start1,
Forlterl end1,
Forlter2 start2,
Forlter2 end2)

200

Herb Schildt's C++ Programming Cookbook

The preceding recipe showed how to search for a specific element. This recipe shows how to
search for a sequence of elements. Such a search is, obviously, quite useful in a variety of
situations. For example, assume a deque that contains strings that indicate the success or
failure of attempts to log into a network. You might want to search that container for
occurrences in which an incorrect password was entered three times in row, which could
indicate an attempted break-in. To do this, you need to search for a sequence of three
failures. Finding a single failure is insufficient. The principal algorithm used to find a
sequence is search(), and it is demonstrated by this recipe.

Step-by-Step

To search for a sequence of elements involves these steps:

1. Define the sequence that you want to find.

2. Call search(), passing in iterators to the start and end of the range to search and
iterators to the start and end of the sequence to find.

Discussion

The search() algorithm looks for a sequence of elements. It has two forms. The one used by
this recipe is shown here:

template <class Forlterl, class Forlter2>
Forlterl search(Forlter1 start1, Forlterl end1,
Forlter2 start2, Forlter2 end2)

The sequence being searched is defined by the range start1 through end1-1. The subsequence
being sought is specified by start2 and end2-1. If the subsequence is found, an iterator to its
beginning is returned. Otherwise, end1 is returned.

There is no requirement that the sequence being searched and the sequence being sought
must be stored in the same type of container. For example, you can look for a sequence in a list
that matches a sequence from a vector. This is one of the advantages of the STL algorithms.
Because they work through iterators, they can be applied to any container that supports the
required iterator type, which is a forward iterator in this case.

Example

The following example shows search() in action. It searches a deque that contains network
log-in responses. It looks for a series of log-in attempts in which the incorrect password was
entered three times in a row, which might indicate a possible break-in. For this example,
assume that the network log can contain several different types of responses, such as log-in
OK, connection failed, and so on. However, when an invalid password is entered, the
following two responses are placed in the log:

invalid password
password reprompt

To look for possible break-in attempts, the program looks for cases in which these responses
occur three times in a row. If it finds this sequence, it reports that a possible network
break-in occurred.

Chapter 4: Algorithms, Function Objects, and Other STL Components

NOTE Another example of the search() algorithm is found in Chapter 2, in the recipe Create
Case-Insensitive Search and Search-and-Replace Functions for string Objects.

// Demonstrate search() .

#include <iostream>
#include <deque>
#include <algorithm>
#include <string>

using namespace std;

int main()
deque<string> log;
deque<string> break in;
deque<string>::iterator itr;

// Create a sequence of three invalid password responses.
break in.push back("invalid password") ;

break in.push back ("password reprompt ") ;

break in.push back("invalid password") ;

break in.push back ("password reprompt ") ;

break in.push back("invalid password") ;

// Create some log entries.
log.push_back("log-on OK") ;

log.push back("invalid password") ;
log.push back ("password reprompt ") ;
log.push_back("log-on OK") ;
log.push back ("connection failed") ;
log.push back("log-on OK") ;

log.push back("log-on OK") ;

log.push back("invalid password") ;
log.push _back ("password reprompt ") ;
log.push back("invalid password") ;
log.push back ("password reprompt ") ;
log.push back("invalid password") ;
log.push back ("port conflict");
log.push back("log-on OK") ;

cout << "Here is the log:\n";

for (itr = log.begin(); itr != log.end(); ++itr)
cout << *itr << endl;

cout << endl;

// See if an attempt was made to break in.
itr = search(log.begin(), log.end(), break in.begin(), break in.end()) ;

if (itr != log.end())
cout << "Possible attempted break-in found.\n";
else

201

202

Herb Schildt's C++ Programming Cookbook

cout << "No repeated password failures found.\n";

return O;

}
The output is shown here:

Here is the log:
log-on OK

invalid password
password reprompt
log-on OK
connection failed
log-on OK

log-on OK

invalid password
password reprompt
invalid password
password reprompt
invalid password
port conflict
log-on OK

Possible attempted break-in found.

It is important to understand that the call to search() will succeed only if three invalid
password responses occur in a row. To confirm this, try commenting out one of the calls to
log.push_back("password reprompt "). When the program is run, it will no longer find a
matching sequence.

Options and Alternatives
There is a second form of search() that lets you specify a binary predicate that determines
when two elements are equal. It is shown here:

template <class Forlterl, class Forlter2, class BinPred>
Forlterl search(Forlterl start1, Forlterl endl,
Forlter2 start2, Forlter2 end2, BinPred pfn)

It works just like the first version, except that the binary predicate is passed in pfn.
You can find the last occurrence of a sequence by calling find_end(), shown here:

template <class Forlterl, class Forlter2>
Forlter] find_end(Forlterl start1, Forlterl endl,
Forlter2 start2, Forlter2 end2)

template <class Forlterl, class Forlter2, class BinPred>
Forlterl find_end(Forlter1 start1, Forlterl endl,
Forlter2 start2, Forlter2 end?2,
BinPred pfn)

Chapter 4: Algorithms, Function Objects, and Other STL Components 203

It works just like search(), except that it finds the last, rather than the first, occurrence of the
range specified by start2 and end2 within the range specified by start1 and end1.

To search for a sequence of a specified length in which all values are the same, consider
using search_n(). It has the two forms shown here:

template <class Forlterl, class Size, class T>
Forlterl search_n(Forlter1 start, Forlter1 end,
Size num, const T &val)

template <class Forlterl, class Size, class T, class BinPred>
Forlterl search_n(Forlter1 start, Forlter1 end,
Size num, const T &wval, binPred pfn)

Within the range start through end-1, search_n() searches for a sequence of num elements
that are equal to val. If the sequence is found, an iterator to its beginning is returned.
Otherwise, end is returned. The second form lets you specify a binary predicate that
determines when one element is equal to another.

Other algorithms that relate to searching for a sequence are equal(), which compares
two sequences for equality, and mismatch(), which finds the first mismatch between two
sequences.

rd

Reverse, Rotate, and Shuffle a Sequence

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Randlter>

void random_shuffle(Randlter start,
Randlter end)
template <class Bilter>
void reverse(Bilter start, Bilter end)
template <class Forlter>
void rotate(Forlter start, Forlter mid,
Forlter end)

This recipe demonstrates the use of three related algorithms: reverse(), rotate(), and
random_shuffle(). They relate to each other because each changes the order of the range
to which it is applied. The reverse() algorithm reverses the sequence, rotate() rotates
the sequence (that is, it takes an element off one end and puts it on the other), and
random_shuffle() randomizes the order of the elements.

204 Herb Schildt's C++ Programming Cookbook

Step-by-Step
To reverse, rotate, or shuffle a sequence involves these steps:
1. Reverse a sequence by calling reverse(), specifying the endpoints of the range to
reverse.
2. Rotate a sequence by calling rotate(), specifying the endpoints of the range to rotate.

3. Randomize the order of elements within a sequence by calling random_shuffle(),
specifying the endpoints of the range to randomize.

Discussion
You can reverse the contents of a sequence by calling reverse(). It has this prototype:

template <class Bilter> void reverse(Bilter start, Bilter end)

The reverse() algorithm reverses the order of the range start through end-1.
The rotate() algorithm performs a left-rotate. A rotate is a shift in which the value shifted
off one end is put onto the other end. The prototype for rotate() is shown here:

template <class Forlter>
void rotate(Forlter start, Forlter mid, Forlter end)

The rotate() algorithm left-rotates the elements in the range start through end-1 so that the
element specified by mid becomes the new first element.

An algorithm that is particularly useful to programmers creating simulations is
random_shuffle(). It re-orders the elements in a sequence in some random way. It has
the two versions shown here:

template <class RandlIter>
void random_shuffle(Randlter start, Randlter end)

template <class Randlter, class Generator>
void random_shuffle(Randlter start, Randlter end, Generator rand_gen)

The random_shuffle() algorithm randomizes the range start through end-1. In the second
form, rand_gen specifies a custom random number generator. This function must have the
following general form:

rand_gen(num)

It must return a random number between zero and num. Notice that random_shuffle()
requires random-access iterators. This means that it can be used on containers such as
vector and deque, but not on list, for example.

Example

The following example demonstrates reverse(), rotate(), and random_shuffle():

// Reverse, rotate, and shuffle a sequence.

#include <iostream>
#include <vectors>

Chapter 4: Algorithms, Function Objects, and Other STL Components

#include <algorithm>

using namespace std;

void show(const char *msg, vector<ints> vect);

int main()

{

}

vector<int> v;
for (int i=0; i<10; i++) v.push back(i);

show ("Original order: ", v);
cout << endl;

// Reverse v.
reverse (v.begin(), v.end());
show ("After reversal: ", Vv);
cout << endl;

// Reverse again to restore original order.
reverse (v.begin (), v.end());

show ("After second call to reverse(): ", Vv);
cout << endl;

// Rotate left one position.
rotate (v.begin(), v.begin()+1, v.end());

show ("Order after rotating left one position:
cout << endl;

// Now, rotate left two places.
rotate (v.begin(), v.begin()+2, v.end());

show ("Order after rotating left two positions:

cout << endl;
// Randomize v.
random shuffle (v.begin(), v.end());

show ("After shuffle: ", v);

return 0;

// Display the contents of a vector<ints.
void show (const char *msg, vector<ints vect) {

cout << msg;

for (unsigned i=0; 1 < vect.size(); ++1)
cout << vect[i] << " ";

cout << "\n";

205

206

Herb Schildt's C++ Programming Cookbook

The output is shown here:

Original order: 0 1 2 3 4 56 7 8 9

After reversal: 9 8 7 6 54 3 210

After second call to reverse(): 01 2 3 456 7 89

Order after rotating left one position: 1 2 3 456 7 8 90
Order after rotating left two positions: 3 4 56 78 9 0 1 2

After shuffle: 1 4 2 53 806 7 9

Bonus Example: Use Reverse Iterators to Perform a Right-Rotate

Although the STL supplies a left-rotate algorithm, it does not provide one that right-rotates.
At first, this might seem like a serious flaw in the STL's design, or at least a troublesome
omission. But neither is the case. To perform a right-rotate, use the rotate() algorithm, but
call it using reverse iterators. Since reverse iterators run backwards, the net effect of such

a call is that a right-rotate is performed on the sequence! This technique is demonstrated by
the following program.

// Right-rotate a sequence by using reverse iterators with
// the rotate() algorithm.

#include <iostream>
#include <vectors
#include <algorithm>
using namespace std;
void show(const char *msg, vector<ints> vect);
int main/()
vector<ints> v;

for (int i=0; i<10; i++) v.push back(i);

show ("Original order: ", v);
cout << endl;

// Rotate right two positions using reverse iterators.

rotate (v.rbegin(), v.rbegin()+2, v.rend()) ;
show ("Order after two right-rotates: ", v);
return O;

}

// Display the contents of a vector<ints.

Chapter 4: Algorithms, Function Objects, and Other STL Components

void show (const char *msg, vector<ints> vect) {
cout << msg;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}

Here is the program's output:

Original order: 0 1 2 3 4 56 7 8 9

Order after two right-rotates: 8 9 0 1 2 3 4 5 6 7

As you can see, the original sequence was rotated right two positions.

As this application of rotate() illustrates, part of the STL's power and elegance come
from the subtleties of its design. By defining reverse iterators, the creators of the STL made
it possible for several algorithms to operate in reverse order, thus reducing the need to
explicitly define a backwards-running complement for each algorithm. While it certainly
would have been possible to create a template library that did not include such things as
reverse iterators, it is these types of constructs that streamline its design.

Options and Alternatives

There is a variation of reverse() called reverse_copy() that you might find useful in some
cases. Instead of reversing the contents of the specified sequence in place, it copies the
reversed sequence into another range. It has this prototype:

template <class Bilter, class Outlter>
void reverse_copy(Bilter start, Bilter end, Outlter result_start)

It copies in reverse order the range start through end-1 into the sequence whose initial
element is pointed to by result_start. The range pointed to by result_start must be at least as
large as the range being reversed.

Similarly, there is a variation of rotate() called rotate_copy() that copies the rotated
sequence into another range. It is shown here:

template <class Forlter, class Outlter>
void rotate_copy(Forlter start, Forlter mid, Forlter end, Outlter result_start)

It copies the range start through end-1 into the range whose first element is pointed to by
result_start. The range pointed to by result_start must be at least as large as the range being
rotated. In the process, it left-rotates the elements so that the element specified by mid
becomes the new first element. It returns an iterator to one past the end of the resulting
range.

You can create permutations of a range by calling next_permutation() or
prev_permutation(). These are described in Permute a Sequence.

201

208

'

Cycle Through a Container with for_each

Herb Schildt's C++ Programming Cookbook

Key Ingredients

Headers Classes Functions
<algorithm> template<class Inlter, class Func>
Func for_each(Inlter start, Inlter end,

Func fn)

As most programmers know, cycling through the contents of a container is a very common
activity. For example, to display the contents of a container, you will need to cycle through
it from start to finish, displaying each element in turn. Cycling through a container can be
performed in a variety of ways. For example, you can cycle through any type of container
through the use of an iterator. Containers such as vector and deque allow you to cycle
through their contents via the array subscripting operator. The for_each() algorithm offers
another approach. It cycles through a range of elements, applying a specific operation to
each element. This recipe demonstrates its use.

Step-by-Step

To cycle through a range of elements by use of for_each() involves these steps:

1. Create a function (or function object) that will be called for each element in the
range.

2. Call for_each(), passing in iterators to the beginning and end of the range to be
processed and the function to be applied.

Discussion
The prototype for the for_each() algorithm is shown here:

template<class Inlter, class Func>
Func for_each(Inlter start, Inlter end, Func fn)

The for_each() algorithm applies the function fn to the range of elements specified by start
and end. Thus, fn is called once for each element in the range. for_each() returns fn. You can
pass either a function pointer or a function object to fn. In both cases, the fn must take one
argument whose type is compatible with the type of the elements in the specified range. It
can return a value. However, if fn does return a value, the value is ignored by for_each().
Therefore, often, the return type of fu is void. However, a return value might be useful in
situations other than in a call to the for_each() algorithm. For example, f1 could keep a
count of the number of elements that it processes and return this count after the for_each()
algorithm returns.

Chapter 4: Algorithms, Function Objects, and Other STL Components

Example

The following example shows for_each() in action. It uses for_each() for two purposes.
First, a call to for_each() displays the contents of a container, one element at a time. It uses
the show() function to display each element. Second, it computes the summation of the
elements in the container. In this case, for_each() is passed a pointer to the summation()
function. Notice that this function returns the summation. This value is not used by
for_each(). Rather, it is obtained afterwards to obtain the sum of the elements.

// Demonstrate the for each() algorithm.
#include <iostream>

#include <vectors

#include <algorithm>

using namespace std;

// Display an int value.
void show (int i)
cout << i << " ";

}

// Keep a running sum of the values passed to i.
int summation (int i)
static int sum = 0;

sum += 1;
return sum;

}

int main ()

{

vector<int> v;

int i;

for(i=1; i < 11; i++) v.push back(i);
cout << "Contents of v: ";

for each(v.begin(), v.end(), show);

cout << "\n";

for each(v.begin(), v.end(), summation);
cout << "Summation of v: " << summation (0) ;

return O;

}

The output is shown here:

Contents of v: 1 2 3 4 56 7 8 9 10
Summation of v: 55

As explained in the discussion, the function passed to for_each() must have one
parameter, and the type of this parameter must be the same as the type of the elements in
the container on which the for_each() is used. In this example, because v is a vector of int,

209

210

Herb Schildt's C++ Programming Cookbook

both show() and summation() have one int parameter. Each time one of these functions is
called, it is passed an element from the specified range. It must be pointed out that the
summation() function is quite limited. A better way to implement it is as a function object,
as is shown in Create a Custom Function Object.

Options and Alternatives

The International Standard for C++ categorizes for_each() as a non-modifying algorithm.
However, this label can be a bit misleading. For example, there is nothing that prevents the
function passed to for_each() from using a reference parameter and modifying the
underlying element through the reference. In other words, a function applied to each element
in a container could be declared like this:

void fu(type &arg)

In this case, arg is a reference parameter. Thus, the value pointed to by arg could be changed
via an assignment, as shown here:

arg = newvalue;

For example, the following function will reverse the case of a character that it is passed,
changing an uppercase letter to lowercase and a lowercase to uppercase. Notice that ch is
passed by reference.

// Reverse the case of the character passed in ch.
void rev_case(char &ch) {

if (islower (ch)) ch = toupper(ch);

else ch = tolower(ch) ;

}

Therefore, assuming a vector called v that contains characters, the following call to for_each()
will modify v such that each character in the container has its case reversed:

for_each(v.begin(), v.end(), rev_case);

Although the preceding code works, I am uncomfortable with it for two reasons. First,
as explained, the International Standard for C++ categorizes for_each() as a non-modifying
algorithm. While not technically breaking this rule (because the algorithm, itself, does not
modify the sequence), changing the contents of the container as a side effect of the function
passed to for_each() seems inconsistent and misleading. Second, the STL offers a better
way to modify a sequence that uses the transform() algorithm, which is described in Use
transform() to Change a Sequence.

The example program passed a function pointer to for_each(), but you can also pass a
function object. Recall that a function object is an instance of a class that implements
operator(). Function objects are described in detail in Use a Built-In Function Object and
Create a Custom Function Object. For an example that uses a function object with for_each(),
see Create a Custom Function Object.

Chapter 4: Algorithms, Function Objects, and Other STL Components

”~

Use transform() to Change a Sequence

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Inlter, class Outlter,
class Func>

Outlter transform(Inlter start, Inlter end,
Outlter result,
Func unaryfunc)

template <class Inlterd, class Inlter2,
class Outlter, class Func>
Outlter transform(Initerl start1,
Inlterd end1,
Inlter2 start2,
Outlter result,
Func binaryfunc)

Sometimes, you will want to apply a transformation to all of the elements within a sequence
and store the result. The best way to accomplish this is to use the transform() algorithm. It
has two forms. The first lets you apply a transformation to a range of elements from a single
sequence. The second lets you apply a transformation to elements from two sequences. In
both cases, the resulting sequence is stored. A key aspect of transform() is that the resulting
sequence can be the same as the input sequence or it can be a different sequence. Thus,
transform() can be used to change the elements in a sequence in place or to create a separate
sequence that contains the result. This recipe shows the process.

Step-by-Step
To apply transform() to the elements of a single range involves the following steps:
1. Create a function (or function object) that performs the desired transform. It must
have a single parameter that receives an element from the input range.
2. Call transform(), specifying the input range, the output range, and the transform
function.
To apply transform() to pairs of elements from two ranges involves the following steps:
1. Create a function (or function object) that performs the desired transform. It must
have two parameters, with each receiving an element from an input range.

2. Call transform(), specifying both input ranges, the output range, and the transform
function.

2

212

Herb Schildt's C++ Programming Cookbook

Discussion
The transform() algorithm has these two forms.

template <class Inlter, class Outlter, class Func)
Outlter transform(Inlter start, Inlter end, Outlter result, Func unaryfunc)

template <class Inlter1, class Inlter2, class Outlter, class Func)
Outlter transform(Inlterl start1, Inlterl end1, Inlter2 start2,
Outlter result, Func binaryfunc)

The transform() algorithm applies a function to a range of elements and stores the
outcome in result. The range pointed to by result must be at least as large as the range being
transformed. In the first form, the range is specified by start and end. The function to be
applied is specified by unaryfunc. It receives the value of an element in its parameter and it
must return its transformation. In the second form of transform(), the transformation is
applied using a function that receives the value of an element from the sequence to be
transformed (start1 to endl) in its first parameter and an element from the second sequence
(beginning at start2) as its second parameter. Both versions of transform() return an iterator
to the end of the resulting sequence.

Akey aspect of transform() is that it can be used to change the contents of a sequence
in-place. Therefore, for the first form of transform(), result and start can both specify the
same element. For the second form, the result can be the same as either start1 or start2.

There is one more important point about transform(): The International Standard for
C++ states that the transformation function (unaryfunc or binaryfunc) must not produce side
effects.

Example
The following example shows both forms of transform() in action. The first form is used to
compute the reciprocals of a sequence of double values that are held in a vector. This
transformation is applied twice. First, it stores the results back into the original sequence.
The second time, it stores the results in another sequence. In both cases, the reciprocal()
function is passed to transform().

The second form of transform() computes the midpoints between two integer values
contained in two sequences. It stores the result in a third sequence. The midpoint() function
performs the midpoint computation, and it is the function that is passed to transform().

// Demonstrate the transform() algorithm.

//

// Both versions of transform() are used within

// the program. The first alters the sequence of doubles
// so that it contains reciprocal values. The second

// creates a sequence that contains the midpoints

// between the values in two other sequences.

#include <iostream>
#include <vectors>
#include <algorithms>

Chapter 4: Algorithms, Function Objects, and Other STL Components

using namespace std;

double reciprocal (double val) ;
int midpoint (int a, int b);

template<class T> void show(const char *msg, vector<Ts> vect);

int main()

{

int 1i;

// First, demonstrate the single-sequence form of transform().
vector<double> v;

// Put values into v.
for(i=1; i < 10; ++1i) v.push back((double)i);

cout << "Demonstrate single-sequence form of transform().\n";
show ("Initial contents of v:\n", v);
cout << endl;

// Transform v by applying the reciprocal() function.

// Put the result back into v.

cout << "Compute reciprocals for v and store the results back in v.\n";
transform(v.begin(), v.end(), v.begin(), reciprocal) ;

show ("Transformed contents of v:\n", v);

// Transform v a second time, putting the result into a new sequence.
cout << "Transform v again. This time, store the results in v2.\n";
vector<double> v2(10) ;

transform(v.begin(), v.end(), v2.begin(), reciprocal) ;

show ("Here is v2:\n", v2);
cout << endl;

// Now, demonstrate the two-sequence form of transform()

cout << "Demonstrate double-sequence form of transform().\n";
vector<int> v3, v4, v5(10);

for(i = 0; 1 < 10; ++1i) v3.push back(i);

for(i = 10; i < 20; ++1i) 1f(i%2) v4.push back(i); else v4.push back(-i);

show ("Contents of v3:\n", v3);
show ("Contents of v4:\n", v4);

cout << endl;

cout << "Compute midpoints between v3 and v4 and store results in v5.\n";
transform(v3.begin(), v3.end(), v4.begin(), v5.begin(), midpoint) ;

show ("Contents of v5:\n", v5);

return O;

214 Herb Schildt's C++ Programming Cookbook

// Display the contents of a vector<ints.
template<class T> void show(const char *msg, vector<Ts> vect) ({
cout << msg;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}

// Return the whole-number midpoint between two values.
int midpoint (int a, int b)

return((a-b) / 2) + b;
}

// Return the reciprocal of a double.
double reciprocal (double val) {

if(val == 0.0) return 0.0;

return 1.0 / val; // return reciprocal

}
The output is shown here:

Demonstrate single-sequence form of transform().
Initial contents of wv:
12345672829

Compute reciprocals for v and store the results back in v.
Transformed contents of wv:

1 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 0.111111
Transform v again. This time, store the results in v2.
Here is v2:

1234567890

Demonstrate double-sequence form of transform().
Contents of v3:

01234567829

Contents of v4:

-10 11 -12 13 -14 15 -16 17 -18 19

Compute midpoints between v3 and v4 and store the results in v5.
Contents of v5:
-5 6 -5 8 -5 10 -5 12 -5 14

Akey point illustrated by the program is that the function or function object used by
transform() must specify a parameter or parameters whose types are compatible with the
types of the elements in the sequences. Also, it must return a compatible type.

Options and Alternatives

The ranges specified in the two-sequence version of transform() do not need to be in
separate containers. This is a common misconception. Instead, you can specify both ranges
from the same container. For example, assuming the preceding program, the following

Chapter 4: Algorithms, Function Objects, and Other STL Components

computes the midpoints between the first and last five elements of v3 and stores them in the
first five elements of v5:

transform(v3.begin(), v3.begin()+5, v3.begin()+5, v5.begin(), midpoint) ;

As mentioned, it is possible to store the result back into one of the original sequences,
thus allowing a sequence to be modified in-place. When using the two-sequence form of
transform(), the target sequence can be either of the input sequences. For example, this
statement computes the midpoints for the sequences held in v3 and v4 and stores the result
in v4:

transform(v3.begin(), v3.end(), v4.begin(), v4.begin(), midpoint) ;

This works because the values of each pair of elements are first obtained from each sequence
and then passed to midpoint(). The result is then stored in v4. Thus, the original values in v4
are obtained before they are overwritten.

The preceding example passed function pointers to transform(), but you can also use
function objects. Function objects are described in detail in Use a Built-In Function Object and
Create a Custom Function Object. For an example that uses a function object with transform(),
see Create a Custom Function Object.

If you want to perform a non-modifying operation on a sequence, consider using
for_each(). See Cycle Through a Container with for_each().

In some cases, you may want to generate a sequence of elements that are not
transformations of another sequence. To do this, you can use the generate() or
generate_n() algorithms. They are shown here:

template <class Forlter, class Generator>
void generate(Forlter start, Forlter end, Generator fngen)

template <class Outlter, class Size, class Generator>
void generate_n(Outlter start, Size num, Generator fugen)

The algorithms generate() and generate_n() assign values returned by a generator function
to elements within a specified range. For generate(), the range being assigned is specified
by start and end. For generate_n(), the range begins at start and runs for num elements. The
generator function is passed in fugen. It has no parameters and it must return objects that
are compatible with the type of the desired sequence. Here is a very simple example that
demonstrates generate(). It uses a function called pow_of_two() to generate a sequence
that contains powers of 2.

// Generate a sequence.
#include <iostream>
#include <vectors>
#include <algorithm>

using namespace std;

double pow of two() ;

215

216 Herb Schildt's C++ Programming Cookbook

int main ()

{

vector<double> v (5) ;

// Generate a sequence.
generate (v.begin(), v.end(), pow of two);

cout << "Powers of 2: ";
for (unsigned i=0; i < v.size(); ++1)
cout << v[i] << " ";

return O;

}

// A simple generator function that generates the powers of 2.
double pow of two() {

static double val = 1.0;

double t;

t = val;
val += wval;

return t;

}
The following output is displayed:

Powers of 2: 1 2 4 8 16

Chapter 4: Algorithms, Function Objects, and Other STL Components 217

rd

Perform Set Operations

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Inlterl, class Inlter2,

class Outlter>
Outlter set_union(
Inlterl startl, Inlterl end1,
Inlter2 start2, Inlter2 end?2,
Outlter result)
template <class Inlterd, class Inlter2,
class Outlter>
Outlter set_difference(
Inlterd startl, Inlterl endl1,
Inlter2 start2, Inlter2 end2,
Outlter result)
template <class Inlterl, class Inlter2,
class Outlter>
Outlter set_symmetric_difference(
Inlterl startl, Inlterl end1,
Inlter2 start2, Inlter2 end?2,
Outlter result)
template <class Inlterd, class Inlter2,
class Outlter>
Outlter set_intersection(
Inlterd startl, Inlterd end1,
Inlter2 start2, Inlter2 end2,
Outlter result)
template <class Inlterl, class Inlter2>
bool includes(Inlterl startl, Inlterl end1,
Inlter2 start2, Inlter2 end?2)

The STL provides five algorithms that perform set operations. Understand that these
algorithms operate on any type of container; they are not for use only with the set or
multiset classes. The one requirement is that the contents of the containers must be in sorted
order. The set algorithms are set_union(), set_difference(), set_symmetric_difference(),
set_intersection(), and includes(). This recipe demonstrates their use.

Step-by-Step
To use the set algorithms involves these steps:
1. The two sequences that will participate in the set algorithms must be sorted. They
must also both contain elements of the same or compatible types.

2. Obtain the union of two sets by calling set_union().

218 Herb Schildt's C++ Programming Cookbook

3. Obtain the difference between two sets by calling set_difference().

4. Obtain the symmetric difference between two sets by calling
set_symmetric_difference().

5. Obtain the intersection of two sets by calling set_intersection().

6. Determine if one set includes all of another set by calling includes(). This algorithm
can be used to determine a subset relationship.

Discussion

To obtain the union of two sorted sets, use set_union(). It has two forms. The one used by
this recipe is shown here:

template <class Inlter1, class Inlter2, class Outlter>
Outlter set_union(Inlterl start1, Inlterl endl,
Inlter2 start2, Inlter2 end2, Outlter result)

It produces a sequence that contains the union of the two sets defined by the ranges start1
through end1-1 and start2 through end2-1. Thus, the resultant set contains those elements
that are in both sets. The result is sorted and put into result. The input ranges must not
overlap the resulting range. An iterator to the end of the resulting range is returned.

To obtain the difference between two sorted sets, use set_difference(). It has two forms.
The one used by this recipe is shown here:

template <class Inlter1, class Inlter2, class Outlter>
Outlter set_difference(Inlterl start1, Inlter] endl,
Inlter2 start2, Inlter2 end2, Outlter result)

The set_difference() algorithm produces a sequence that contains the difference between
the two sets defined by the ranges start1 through end1-1 and start2 through end2-1. That is,
the set defined by start2, end2 is removed from the set defined by start1, end1. The result is
sorted and put into result. The input ranges must not overlap the resulting range. An iterator
to the end of the resulting range is returned.

The symmetric difference of two ordered sets can be found using the
set_symmetric_difference() algorithm. It has two forms. The one used by this recipe is
shown here:

template <class Inlter], class Inlter2, class Outlter>
Outlter set_symmetric_difference(Inlterl start1, Inlterl end1,
Inlter2 start2, Inlter2 end2, Outlter result)

The set_symmetric_difference() algorithm produces a sequence that contains the
symmetric difference between the two ordered sets defined by the ranges start1 through
end1-1 and start2 through end2-1. The symmetric difference of two sets contains only those
elements that are not common to both sets. The result is sorted and put into result. The
input ranges must not overlap the resulting range. An iterator to the end of the resulting
range is returned.

The intersection of two sorted sets can be obtained by calling set_intersection(). It has
two forms. The one used by this recipe is shown here:

Chapter 4: Algorithms, Function Objects, and Other STL Components

template <class Inlter1, class Inlter2, class Outlter>
Outlter set_intersection(Inlter] start1, Inlterl end1,
Inlter2 start2, Inlter2 end2, Outlter result)

The set_intersection() algorithm produces a sequence that contains the intersection of the
two sets defined by the ranges start1 through end1-1 and start2 through end2-1. These are
the elements common to both the sets. The result is ordered and put into result. The input
ranges must not overlap the resulting range. An iterator to the end of the resulting range is

returned.

For all of the preceding algorithms, the range pointed to by result must be large enough
to hold the elements that will be stored in it. The set algorithms overwrite the existing

elements. They do not insert new elements.

To see if the entire contents of one sorted set is included in another, use includes().

It has two forms. The one used by this recipe is shown here:

template <class Inlter], class Inlter2>
bool includes(Inlter1 start1, Inlterl end1,
Inlter2 start2, Inlter2 end?2)

The includes() algorithm determines if the range start1 through end1-1 includes all of the
elements in the range start2 through end2-1. It returns true if the elements are all found and
false otherwise. The includes() algorithm can be used to determine if one set is a subset of

another.

Remember, the set algorithms can be used with any sorted sequence, not just instances

of set or multiset. However, in all cases, the sequence must be sorted.

Example

The following program demonstrates the set algorithms:

// Demonstrate the set algorithms.

//

// This program uses list, but any other sequence
// container could be used.

#include <iostream>
#include <lists>
#include <algorithm>

using namespace std;

template<class InIters>
void show range (const char *msg, InIter start,

int main()

list<char> 1lstl, 1st2, result(l5), 1lst3;
list<char>::iterator res_end;

for(int i=0; i < 5; i++) lstl.push back('A'+i);
for(int i=3; i < 10; i++) lst2.push back('A'+i);

InIter end) ;

219

220 Herb Schildt's C++ Programming Cookbook

show_range ("Contents of 1lstl: ", lstl.begin(), lstl.end());
cout << endl;

show_range ("Contents of 1lst2: ", lst2.begin(), lst2.end());
cout << endl;

// Create the union of 1lstl and 1lst2.
res_end = set_union(lstl.begin(), 1lstl.end(),

)
1st2.begin(), lst2.end(),
result.begin()) ;
show_range ("Union of 1lstl and lst2: ", result.begin(), res_end);

cout << endl;

// Create a set that contains 1lstl - lst2.

res _end = set difference(lstl.begin(), lstl.end(),
lst2.begin(), 1lst2.end(),
result.begin()) ;

show_range ("lstl - 1st2: ", result.begin(), res_end);

cout << endl;

// Create the symmetric difference between lstl and lst2.

res_end = set symmetric difference(lstl.begin(), lstl.end(),
lst2.begin(), 1lst2.end(),
result.begin()) ;

show_range ("Symmetric difference of 1lstl and 1lst2: ",
result.begin(), res_end);

cout << endl;

// Create the intersection of 1lstl and lst2.

res_end = set_ intersection(lstl.begin(), lstl.end(),
lst2.begin(), 1lst2.end(),
result.begin()) ;
show_range ("Intersection of 1lstl and 1lst2: ", result.begin(), res_end);

cout << endl;

// Use includes () to check for subset.
1st3.push back('A');
1st3.push back('C');
1st3.push back('D');

if (includes(lstl.begin(), lstl.end(),
1st3.begin(), 1lst3.end()))
cout << "lst3 is a subset of lstl\n";
else

cout << "lst3 is not a subset of lstl\n";

return 0;

Chapter 4: Algorithms, Function Objects, and Other STL Components 221

// Show a range of elements.
template<class InIters>
void show range (const char *msg, InIter start, InIter end) {

Inlter itr;
cout << msg;
for(itr = start; itr != end; ++itr)

cout << *itr << " ";
cout << endl;

}

This program generates the following output.

Contents of 1lstl: A B CDE

Contents of 1st2: DEF GH I J

Union of 1lstl and 1lst2: ABCDEFGHTIJ

lstl - 1lst2: A B C

Symmetric difference of 1lstl and 1st2: ABCF GHTIJ
Intersection of 1lstl and 1lst2: D E

1st3 is a subset of 1stl

Options and Alternatives

All of the set algorithms provide a second form that lets you specify a comparison function,
which determines when one element is less than another. You can use this function to
specify the ordering of the input sequences and of the result. These forms are shown here:

template <class Inlter1, class Inlter2, class Outlter, class Comp>
Outlter set_union(Inlterl start1, Inlterl end1,
Inlter2 start2, Inlter2 end2, Outlter result, Comp cmpfn)

template <class Inlter1, class Inlter2, class Outlter, class Comp>
Outlter set_difference(Inlterl start1, Inlter] endl,
Inlter2 start2, Inlter2 end2,
Outlter result, Comp cmpfn)

template <class Inlter1, class Inlter2, class Outlter, class Comp>
Outlter set_symmetric_difference(Inlterl start1, Inlterl end1,
Inlter2 start2, Inlter2 end2, Outlter result, Comp cmpfn)

template <class Inlter1, class Inlter2, class Outlter, class Comp>
Outlter set_intersection(Inlter] start1, Inlterl endl,
Inlter2 start2, Inlter2 end?2,
Outlter result, Comp cmpfn)

222 Herb Schildt's C++ Programming Cookbook

template <class Inlter], class Inlter2, class Comp>
bool includes(Inlterl start1, Inlter] end1,
Inlter2 start2, Inlter2 end2, Comp cmpfn)

For all, the ranges specified by start1, end1 and start2, end2 must be sorted in accordance
with the comparison function passed in cmpfn, which determines when one element is less
than another. The result will also be sorted according to cmpfn. Otherwise, these functions
work like their previously described versions.

rd

Permute a Sequence

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Bilter>
bool next_permutation(Bilter start,

Bilter end)
template <class Bilter>

bool prev_permutation(Bilter start,
Bilter end)

Two of the more intriguing algorithms are next_permutation() and prev_permutation().
They are used to provide permutations of a sequence. They are often used in simulations
and in testing. These algorithms require bidirectional iterators and can only be used on
sequences that are capable of being sorted. This recipe demonstrates their use.

Step-by-Step

To permute a sequence involves these steps.

1. The sequence to be permuted must support bidirectional iterators and be capable of
being sorted.

2. To obtain the next permutation, call next_permutation(), specifying iterators to the
beginning and end of the range to be permuted.

3. To obtain the previous permutation, call prev_permutation(), specifying iterators
to the beginning and end of the range to be permuted.

Discussion

You can generate a permutation of any sorted sequence by using the algorithms
next_permutation() and prev_permutation(). Each has two forms. The ones used by
this recipe are shown here:

Chapter 4: Algorithms, Function Objects, and Other STL Components

template <class Bilter>

bool next_permutation(Bilter start, Bilter end)
template <class Bilter>

bool prev_permutation(Bilter start, Bilter end)

The next_permutation() algorithm constructs the next permutation of the range start
through end—1. The prev_permutation() algorithm constructs the previous permutation of
the range start through end—1. The permutations are generated assuming a sorted sequence
represents the first permutation. If all permutations have been exhausted, both algorithms
return false. In this case, next_permutation() arranges the range into sorted ascending
order and prev_permutation() arranges the range into sorted descending order. Otherwise,
both functions return true. Therefore, a loop that obtains all possible permutations will run
until false is returned.

Example

The following example uses next_permutation() to generate all possible permutations of
the sequence ABC. It then uses prev_permutation() to generate the permutations in reverse
order.

// Demonstrate next permutation() and prev_permutation() .

#include <iostreams
#include <vectors>
#include <algorithms>

using namespace std;

int main/()
vector<char> v;
unsigned i;

// This creates the sorted sequence ABC.
for (i=0; i<3; i++) v.push back('A'+i);

// Demonstrate next permutation() .
cout << "All permutations of ABC by use of next permutation() :\n";
do {
for(i=0; i < v.size(); i++)
cout << vI[i];
cout << "\n";
} while (next permutation(v.begin(), v.end()));

// At this point, v has cycled back to containing ABC.
cout << endl;
// Demonstrate prev permutation() .

// First, back up to the previous permutation.
prev_permutation(v.begin(), v.end());

223

224 Herb Schildt's C++ Programming Cookbook

cout << "All permutations of ABC by use of prev permutation() :\n";
do {
for(i=0; i<v.size(); i++)
cout << v[i];
cout << "\n";
} while (prev_permutation(v.begin(), v.end()));

return 0;

}
The output from the program is shown here:

All permutations of ABC by use of next permutation():
ABC
ACB
BAC
BCA
CAB
CBA

All permutations of ABC by use of prev permutation():
CBA
CAB
BCA
BAC
ACB
ABC

Options and Alternatives

Both the next_permutation() and prev_permutation() algorithms supply a second form that
lets you specify a comparison function, which determines when one element is less than
another. You can use this function to specify the ordering of the sequence. (In other words,
this function determines the sorted order of the sequence.) These forms are shown here:

template <class Bilter, class Comp>
bool next_permutation(Bilter start, Bilter end, Comp cmpfn)

template <class Bilter, class Comp>
bool prev_permutation(Bilter start, Bilter end, Comp cmpfn)

The permutation order will be based on cmpfn. Otherwise, these functions work like their
previously described versions.

The next_permutation() and prev_permutation() algorithms generate permutations in
a well-defined order. In some situations, you might want to randomize the generation of
permutations. One way to do this is with the random_shuffle() algorithm. It randomizes
a sequence. One of its forms is shown here:

template <class RandlIter> void random_shuffle(Randlter start, RandlIter end)

It randomizes the range start through end—1. Assuming the previous example program, the
following produces a random permutation of v:

random_shuffle(v.begin(), v.end());

Chapter 4: Algorithms, Function Objects, and Other STL Components 225

There is also a second form of random_shuffle() that lets you specify a custom random
number generator. See Reverse, Rotate, and Shuffle a Sequence.

'

Copy a Sequence from One Container to Another

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Inlter, class Outlter>
Outlter copy(Inlter start, Inlter end,
Outlter result)

Although conceptually simple, one of the most important STL algorithms is copy(), which
copies a sequence. It is so important because it gives you a way to copy elements from one
container to another. Furthermore, the types of containers do not need to be the same. For
example, using copy(), you can copy elements from a vector to a list. Of course, what
makes this possible is the fact that copy() (like most of the STL algorithms) works through
iterators. It has been said that iterators are the glue that binds the STL together. The copy()
algorithm illustrates this point, and this recipe shows how to put it into action.

Step-by-Step

To use copy() to copy elements from one type of container to another involves these steps:

1. Confirm that the destination container is large enough to hold the elements that will
be copied to it.

2. Call copy() to copy the elements, specifying the range to be copied and an iterator
to the start of the destination.

Discussion
The copy() algorithm is shown here:

template <class Inlter, class Outlter>
Outlter copy(Inlter start, Inlter end, Outlter result)

This algorithm copies the range start through end-1 into the target sequence, beginning at
result. It returns a pointer to one past the end of the resulting sequence. Here is an important
point: The copied elements are not added to the target container. Rather, they overwrite
existing elements. Therefore, the target container pointed to by result must be large enough
to hold the elements being copied. The copy() algorithm will not automatically increase the
size of the target container when copying elements to it. The algorithm simply assumes that
the target container is large enough.

226 Herb Schildt's C++ Programming Cookbook

There is no requirement that result point into the same container as start and end, or even
use the same type of container. This means that you can use copy() to copy the contents of
one type of container into another. The only restriction is that the element type of the target
container must be compatible with the source container.

Another useful aspect of copy() is that it can be used to left-shift elements within the
same range as long as the last element in the range does not overlap the destination range.

Example

The following example shows how to use copy() to copy elements from a list to a vector.
// Use copy() to copy elements from a list to a vector.

#include <iostream>
#include <vectors>
#include <list>
#include <algorithm>

using namespace std;
template<class T> void show(const char *msg, T cont);

int main ()

{

list<char> 1st;

// Add elements to 1lst.
char str[] = "Algorithms act on containers";
for(int 1 = 0; str[i]; i++) lst.push back(str[i]);

// Create a vector that initially contains 40 periods.
vector<char> v (40, '.');

show ("Contents of 1lst:\n", 1lst);
show ("Contents of v:\n", v);

// Copy lst into v.
copy (lst.begin(), lst.end(), v.begin()+5);

// Display result.
show ("Contents of v after copy:\n", v);
return 0;

}

template<class T> void show(const char *msg, T cont)
cout << msg;
T::iterator itr;
for (itr=cont.begin(); itr != cont.end(); ++itr)
cout << *itr;

cout << "\n\n";

Chapter 4: Algorithms, Function Objects, and Other STL Components 227

The output is shown here:

Contents of 1lst:
Algorithms act on containers

Contents of v:

Contents of v after copy:
..... Algorithms act on containers.......

Options and Alternatives
The STL provides two useful variations on copy(). The first is copy_backward(), shown here:

template <class Bilterl, class Bilter2>
Bilter2 copy_backward(Bilter1 start, Bilter1 end, Bilter2 result)

This algorithm works like copy(), except that it moves elements from the end of the specified
range first, and result must initially point to one past the beginning of the destination range.
Thus, it can be used to right-shift elements within the same range as long as the first element
in the range does not overlap the destination range.

The second copy option is swap_ranges(). It exchanges the contents of one range with
another. Thus, it provides a bidirectional copy. It is shown here:

template <class Forlterl, class Forlter2>
Forlter2 swap_ranges(Forlterl start1, Forlterl end1, Forlter2 start2)

The swap_ranges() algorithm exchanges elements in the range start1 through end1-1 with
elements in the sequence beginning at start2. It returns a pointer to the end of the sequence
specified by start2. The ranges being exchanged must not overlap.

rd

Replace and Remove Elements in a Container

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Forlter, class T>

Forlter remove(Forlter start, Forlter end,
const T &val)
template <class Forlter, class T>
void replace(Forlter start, Forlter end,
const T &old, const T &new)

228

Herb Schildt's C++ Programming Cookbook

The STL provides functions that let you replace or remove elements. At the core of this
functionality is replace() and remove(). Although both of these operations can be
accomplished through the use of container-defined functions, in many cases, these
algorithms streamline the task. This recipe demonstrates them.

Step-by-Step

To remove or replace one or more elements in a sequence involves these steps:

1. To remove all elements that match a specified value, call remove(), specifying the
range to be modified and the value to remove.

2. To replace all occurrences of elements that match a specified value, call replace(),
specifying the range to be modified, the value to replace, and the value to substitute.

Discussion

The remove() algorithm removes all occurrences of a specified element from a specified
range. It is shown here:

template <class Forlter, class T>
Forlter remove(Forlter start, Forlter end, const T &uval)

This algorithm removes all elements in the range start through end-1 that are equal to val.
It returns an iterator to the end of the remaining elements. The order of the remaining
elements is unchanged.

Within a specified range, the replace() algorithm replaces all occurrences of a specified
element with another. It is shown here:

template <class Forlter, class T>
void replace(Forlter start, Forlter end, const T &old, const T &new)

Within the specified range start through end-1, replace() replaces elements that match the
value old with elements that have the value new.

NOTE The list container class provides its own implementation of remove() that is optimized for
lists. Therefore, when removing elements in a list, you should use that function rather than the
remove() algorithm.

Example

The following example shows remove() and replace() in action:
// Demonstrate remove () and replace().

#include <iostream>
#include <vectors

#include <algorithm>
using namespace std;

template<class InIter>
void show range(const char *msg, InIter start, InIter end);

Chapter 4: Algorithms, Function Objects, and Other STL Components

int main ()

{

}

vector<char> v;
vector<chars>::iterator itr, itr_end;

// Create a vector that contains ABCDEABCD E.
for (int 1=0; i<5; i++) {
v.push back ('A'+1i) ;
1
for (int i1=0; i<5; i++)
v.push back ('A'+i);

}

show range ("Original contents of v:\n", v.begin(), v.end());
cout << endl;

// Remove all A's.
itr end = remove(v.begin(), v.end(), 'A');

show_range ("v after removing all A's:\n", v.begin(), itr _end);
cout << endl;

// Replace B's with X's
replace (v.begin(), v.end(), 'B', 'X');

show _range ("v after replacing B with X:\n", v.begin(), itr_end);

cout << endl;

return O;

// Show a range of elements from a vector<chars.
template<class InIter>

}

void show range (const char *msg, InIter start, InIter end) {
InIter itr;

cout << msg;

for(itr = start; itr != end; ++itr)
cout << *itr << " ";

cout << endl;

The output is shown here:

Original contents of v:

A

<

<

BCDEABCDE

after removing all A's:
CDEBCDE

after replacing B with X:
CDEXCDE

229

230

Herb Schildt's C++ Programming Cookbook

Options and Alternatives

The STL provides several alternatives for removing and replacing elements. Two that you

will find especially useful are remove_copy() and replace_copy(). Both generate a new

sequence that contains the result of the operation. Thus, the original sequence is unaltered.
The prototype for remove_copy() is shown here:

template <class Inlter, class Outlter, class T>
Outlter remove_copy(Inlter start, Inlter end, Outlter result, const T &uval)

It copies elements from the specified range, removing those that are equal to val. It puts the
result into the sequence pointed to by result and returns an iterator to one past the end of
the result. The destination range must be large enough to hold the result.

The prototype for replace_copy() is shown next:

template <class Inlter, class Outlter, class T>
Outlter replace_copy(Inlter start, Inlter end,
Outlter result, const T &old, const T &new)

It copies elements from the specified range, replacing elements equal to old with new. It puts
the result into the sequence pointed to by result and returns an iterator to one past the end
of the result. The destination range must be large enough to hold the result.

There are variations on remove(), replace(), remove_copy(), and replace_copy() that
allow you to specify a unary predicate that determines when an element should be
removed or replaced. These are called remove_if(), replace_if(), remove_copy_if(), and
replace_copy_if().

Another algorithm that removes elements from a sequence is unique(). It removes
consecutive duplicate elements from a range. It has the two forms shown here:

template <class Forlter>
Forlter unique(Forlter start, Forlter end)

template <class Forlter, class BinPred>
Forlter unique(Forlter start, Forlter end, BinPred pfn)

Consecutive duplicate elements in the specified range are removed. The second form allows
you to specify a binary predicate that determines when one element is equal to another.
unique() returns an iterator to the end of the resulting range. For example, assuming the
preceding program, if v contains the sequence AABCCBDE, then after this statement
executes

itr end = unique(v.begin(), v.end());

the range v.begin() to itr_end will contain ABCBDE. The STL also provides unique_copy(),
which works just like unique(), except that the result is put into another sequence.

Chapter 4: Algorithms, Function Objects, and Other STL Components 231

rd

Merge Two Sorted Sequences

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Inlterl, class Inlter2,

class Outlter>
Outlter merge(Initerdl startl1, Inlterl end1,
Inlter2 start2, Inlter2 end2,
Outlter result)
template <class Bilter>
void inplace_merge(Bilter start, Bilter mid,
Bilter end)

There are two STL algorithms that merge two sorted sequences: merge() and inplace_merge().
For both, the result is a sorted sequence that contains the contents of both of the original
sequences. As you may recall, merging is directly supported by the list container. However,
it is not provided for the other built-in containers. Therefore, if you want to merge sequences
of elements from anything other than a list container, you will need to use one of the merge
algorithms.

There are two ways in which a merge can take place. First, the result can be stored in a
third sequence. Second, if the merge involves two sequences from the same container, then
the result of the merge can be stored in-place. The first approach is provided by merge(),
and the second approach is provided by inplace_merge(). This recipe illustrates both.

Step-by-Step
To merge two sequences, storing the outcome in a third sequence involves these steps:
1. Ensure that the sequences to be merged are sorted.
2. Call merge(), passing in the ranges to be merged and an iterator to the start of the
destination range that will hold the result.

To merge two sequences in-place involves these steps:

1. Ensure that the sequences to be merged are sorted.

2. Call inplace_merge(), passing in the ranges to be merged. The result will be stored
in-place.

Discussion

The merge() algorithm merges two sorted sequences and stores the result in a third sequence.
It has two forms. The one used by this recipe is shown here:

template <class Inlter], class Inlter2, class Outlter>
Outlter merge(Inlterl start1, Inlterl endl,
Inlter2 start2, Inlter2 end2,
Outlter result)

232 Herb Schildt's C++ Programming Cookbook

The merge() algorithm merges two ordered sequences, placing the result into a third
sequence. The ranges to be merged are defined by start1, end1 and start2, end2. The result is
put into the container pointed to by result. The container pointed to by result must be large
enough to hold the elements that will be stored in it because the merged elements overwrite
the existing elements. The merge() algorithm does not insert new elements. An iterator to
one past the end of the resulting sequence is returned.

It is important to understand that merge() does not require that the input sequences or
the resulting sequence be from the same type of container. For example, you can use merge()
to merge a sequence from an instance of vector with a sequence from an instance of deque,
storing the result in a list object. Thus, merge() offers a way to combine elements from
separate containers.

The inplace_merge() algorithm performs a merge on two sorted consecutive ranges
within the same container, with the result replacing the original two ranges. It has two
forms. The one used by this recipe is shown here:

template <class Bilter>
void inplace_merge(Bilter start, Bilter mid, Bilter end)

Within a single sequence, the inplace_merge() algorithm merges the range start through
mid—1 with the range mid through end-1. Both ranges must be sorted. After executing, the
resulting sequence is sorted and is contained in the range start to end-1.

NOTE The list container class provides its own implementation of merge() that is optimized for
lists. Therefore, when merging lists, you should use that function rather than the merge()
algorithm.

Example

The following example shows merge() and inplace_merge() in action. It uses merge() to
merge a vector with a deque. The result is stored in a list. Notice that both the input
sequences are sorted and the result is sorted. It then uses inplace_merge() to merge two
sequences within the same vector.

// Demonstrate merge() and inplace merge() .

#include <iostream>
#include <vector>
#include <deque>
#include <list>
#include <algorithms>

using namespace std;

template<class InIter>
void show range(const char *msg, InIter start, InIter end);

int main/()

{

vector<char> v;
deque<char> dqg;

Chapter 4: Algorithms, Function Objects, and Other STL Components

list<char> result (26) ;
list<char>::iterator res_end;

// First, demonstrate merge () .

for(int 1=0; i < 26;
for(int 1i=0; i < 26;

show_range ("Original
cout << endl;

show_range ("Original
cout << endl;

// Merge v with dq.

i+=2) v.push back('A'+i);
i+=2) dg.push back('B'+i) ;

contents of v:\n", v.begin(), v.end());

contents of dg:\n", dg.begin(), dg.end()) ;

res_end = merge (v.begin(), v.end(),
dg.begin(), dg.end(),
result.begin()) ;

show range ("Result of merging v with dg:\n", result.begin(), res end);

cout << "\n\n";

// Now, demonstrate inplace merge() .

vector<char> v2;
for(int 1=0; i < 26;
for(int i=0; i < 26;

show_range ("Original contents of v2:\n", v2.begin(), v2.end());

cout << endl;

i+=2) v2.push back('B'+i);
i+=2) v2.push back('A'+i);

// Merge two ranges within v2.
inplace_merge (v2.begin(), v2.begin()+13, v2.end());

show_range ("Contents of v2 after in-place merge:\n", v2.begin(),

v2.end()) ;

return O;

}

// Show a range of elements.

template<class InIters>

void show range (const char *msg, InIter start, InIter end)

Inlter itr;

cout << msg;

for(itr = start; itr

cout << *itr << "
cout << endl;

= end; ++itr)

7

{

233

234

Herb Schildt's C++ Programming Cookbook

The output is shown here:

Original contents of v:
ACEGIKMOQSUWY

Original contents of dqg:
BDFHJLNPRTYVXZ

Result of merging v with dqg:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Original contents of v2:
BDFHJLNPRTVXZACEGIKMOQSUWY

Contents of v2 after in-place merge:
ABCDEFGHIJKLMNOPQRSTUVWIXYZ

Options and Alternatives

There is a second form of merge() that lets you specify a comparison function that
determines when one element is less than another. It is shown here:

template <class Inlter1, class Inlter2, class Outlter, class Comp>
Outlter merge(Inlterl start1, Inlterl endl,
Inlter2 start2, Inlter2 end?2,
Outlter result, Comp cmpfn)

It works just like the first form, except that cmpfn is used to compare two elements. When
using this form, the sequences being merged must also be ordered in accordance with compfn.

There is also a second form of inplace_merge() that lets you specify a comparison
function. It is shown here:

template <class Bilter, class Comp>
void inplace_merge(Bilter start, Bilter mid, Bilter end, Comp cmpfn)

It works like the first version, except that it uses cmpfn to determine when one element is
less than another. As you would expect, the sequences must also be sorted in accordance
with cmpfn.

Chapter 4: Algorithms, Function Objects, and Other STL Components 235

'

Create and Manage a Heap

I Key Ingredients
Headers Classes Functions
<algorithm> template <class Randlter>

void make_heap(Randlter start,
Randlter end)
template <class Randlter>
void pop_heap(Randlter start, Randlter end)
template <class Randlter>
void push_heap(Randlter start,
Randlter end)
template <class Randlter>
void sort_heap(Randlter start, Randlter end)

Aheap is a data structure in which the top element (also called the first element) is the
largest element in the sequence. Heaps allow fast (logarithmic time) insertion and removal
of an element. They are useful in creating priority queues in which the highest priority item
must be immediately available but a completely sorted list is not needed. The STL provides
four algorithms that support heap operations, and this recipe demonstrates their use.

Step-by-Step
To create and manage a heap involves these steps:
1. To create a heap, call make_heap(), specifying the range of elements to be made
into a heap.
2. To add an element into the heap, call push_heap().
3. To remove an element from the heap, call pop_heap().

4. To sort the heap, call sort_heap().

Discussion

Aheap is constructed by using the make_heap() algorithm. It has two forms. The one used
by this recipe is shown here:

template <class RandlIter>
void make_heap(Randlter start, Randlter end)

It constructs a heap from the sequence defined by start and end. Any container that supports
random-access iterators can be used to hold a heap. Building a heap takes linear time.

You can push a new element onto the heap using push_heap(). It has two forms. The
one used by this recipe is shown here:

template <class RandIter>
void push_heap(RandlIter start, Randlter end)

236

Herb Schildt's C++ Programming Cookbook

It puts the element at end-1 onto the heap defined by start through end-2. In other words,
the current heap ends at end—2 and push_heap() adds the element at end-1. The result is a
heap that ends at end—1. Pushing an element onto a heap consumes logarithmic time.

You can remove an element using pop_heap(). It has two forms. The one used by this
recipe is shown here:

template <class RandIter>
void pop_heap(Randlter start, RandIter end)

The pop_heap() exchanges the start and end-1 elements and then rebuilds the heap. The

resulting heap ends at end-2. Popping an element from a heap consumes logarithmic time.
You can sort a heap into ascending order using sort_heap(). Its prototype is

shown here:

template <class RandlIter>
void sort_heap(Randlter start, Randlter end)

The sort_heap() algorithm sorts a heap within the range specified by start and end. Sorting
a heap requires time proportional to N log N.

Example

Here is program that builds a heap, then adds and removes elements. It ends by sorting
the heap.

// Demonstrate the heap algorithms.

#include <iostream>

#include <vectors>

#include <algorithms>

using namespace std;

void show(const char *msg, vector<char> vect) ;
int main ()

{

vector<char> v;
int i;

for (i=0; i<20; i+=2) v.push back('A'+i);

show ("v before building heap:\n", v);
cout << endl;

// Construct a heap.
make heap(v.begin(), v.end());

show ("v after building heap:\n", v);
cout << endl;

Chapter 4: Algorithms, Function Objects, and Other STL Components

// Push H onto heap.
v.push back('H'); // first put H into vector
push heap(v.begin(), v.end()); // now, push H onto heap

show ("v after pushing H onto heap:\n", v);
cout << endl;

// Pop value from heap.
pop_heap (v.begin(), v.end());

show ("v after popping from heap:\n", v);
cout << endl;

// Sort the heap
sort_heap(v.begin(), v.end()-1);
show ("v after sorting the heap:\n", v);

return O;

}

// Display the contents of a vector<chars.
void show(const char *msg, vector<char> vect) {
cout << msg;
for (unsigned i=0; i < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

Here is the output from the program.

v before building heap:
ACEGIKMOQS

v after building heap:
SOMOIZKER AGDZC

v after pushing H onto heap:
SQMOIKEAGCH

v after popping from heap:
QOMHIKEAGTCS

after sorting the heap:
CEGHIZKMOAQS

>

Notice the contents of v after calling pop_heap(). The S is still present, but it is now at
the end. As described, popping from a heap causes the first element to be moved to the end
and then a new heap is constructed on the remaining (N-1) elements. Therefore, although
the popped element (S, in this case) remains in the container, it is not part of the heap. Also
notice that the call to sort_heap() specifies v.end()-1 as the endpoint of the sort. This is
because the S is no longer part of the heap, having been removed by the previous step.

31

238 Herb Schildt's C++ Programming Cookbook

Options and Alternatives

All of the heap functions have a second form that lets you specify a comparison function
that determines when one element is less than another. These versions are shown here:

template <class RandlIter, class Comp>
void make_heap(Randlter start, Randlter end, Comp cmpfn)

template <class RandlIter, class Comp>
void push_heap(Randlter start, Randlter end, Comp cmpfn)

template <class Randlter, class Comp>
void pop_heap(Randlter start, Randlter end, Comp cmpfn)

template <class RandlIter, class Comp>
void sort_heap(Randlter start, Randlter end, Comp cmpfn)

In all cases, cmpfn specifies the comparison function used to determine the ordering of the
elements.

Although the heap algorithms are certainly useful, they require that you manually
manage the heap. Fortunately, there is an easier approach that is applicable to many
situations: the priority_queue container adaptor. It automatically maintains the elements in
the container in order of priority.

rd

Create an Algorithm

I Key Ingredients

Headers Classes Functions

template<iter-types, other-types>
ret-type name(iter-args, other-args)
template<iter-types, other-types, pred_type>
ret-type name(iter-args, other-args,
predicate)

Although the STL provides a rich set of built-in algorithms, you can also create your own.
This is possible because the STL was designed to easily accommodate extensions. As long as
you follow a few simple rules, your algorithms will be fully compatible with the STL's
containers and other elements. Therefore, by creating your own algorithms, you expand the
STL framework to meet your needs. This recipe shows the process.

Step-by-Step

To create your own algorithm involves these steps:

Chapter 4: Algorithms, Function Objects, and Other STL Components

1. Create a template function that takes one or more iterators as arguments.
2. Perform all operations through the iterators passed to the function.

3. If a predicate is needed, include it in the parameter list for the function, and then
define the predicate.

Discussion

In general, the process of creating an algorithm is simple. Just create a template function
that operates through iterators that are passed as arguments. (Technically, an algorithm can
also operate through references, but the vast majority of the time, iterators should be used.)
The iterator type is specified by a template parameter. Thus, a custom algorithm's prototype
will look like the prototypes for the built-in algorithms. Keep in mind one important point:
The generic type name that you give an iterator has no effect on the types of iterators that
you can actually use when calling the algorithm. The generic iterator type names are simply
conventions that document the types of iterators required by the algorithm. Thus, using the
name Bilter in a template does not enforce that only iterators with bidirectional capabilities
can be used. Rather, it is the operators applied to the iterator within the algorithm that
determine what capabilities are required. For example, if you apply + or — to the iterator,
then only random-access iterators can be used as arguments.

In principle, a custom algorithm can return any type of value. For example, consider the
wide variety of return types found in the built-in algorithms. find() returns an iterator,
count() returns an integer value, and equal() returns a Boolean result. The preceding
notwithstanding, here is a good rule to follow: When it makes sense for your algorithm to
return an iterator, it should. Doing so often makes your algorithm more versatile because it
enables the result of one algorithm to be used as input for another. Of course, the specific
nature of your algorithm will dictate its return type.

If your algorithm needs to use a predicate, include a template parameter for the
predicate. Then, supply the predicate when the algorithm is called.

Putting it all together, here are the principal general forms of an algorithm:

template<iter-types, other-types >
ret-type name(iter-args, other-args)

template<iter-types, other-types, pred_type>
ret-type namel(iter-args, other-args, predicate)

Of course, your specific application will dictate type-specific return type, argument types,
and predicate type.

As a point of interest, several of the examples in this chapter use a function called
show_range(). It takes a pointer to a null-terminated string and two iterators as arguments.
It then displays the string followed by the elements within the specified range. Because
show_range() accesses the elements through iterators, it works much like an algorithm. In
my opinion, however, it is not an algorithm in the purest sense because it produces output
that is hard-coded to be displayed on cout. Nevertheless, it does show how iterators
streamline the creation of functions that can be applied to containers. (It is possible to
output information to a stream through an iterator. See Use the Stream Iterators for details.)

239

20

Herb Schildt's C++ Programming Cookbook

Example

The following example shows a custom algorithm called disjoint(), which compares the
elements in two ranges. If the two ranges contain no common elements, then disjoint()
returns true. Otherwise, it returns false.

// This function is an algorithm that determines if the contents of
// two ranges are disjoint. That is, if they contain no elements
// in common.
template<class InIter>
bool disjoint (InIter start, InIter end,
Inlter start2, InIter end2) ({

InIter itr;

for(; start != end; ++start)
for(itr = start2; itr != end2; ++itr)
if (*start == *itr) return false;

return true;

}

As you can see, all operations occur through iterators. Because the iterators move only in
the forward direction and because they retrieve but do not store values, disjoint() can be
called with any type of iterator that supports input operations.

The following program puts disjoint() into action. Notice that the program also makes
use of the show_range() function, which displays the elements within a range. As mentioned,
this function is used by several of the examples in this chapter and works in a fashion very
similar to an algorithm because it operates through iterators.

// This program demonstrates the disjoint () algorithm.

#include <iostream>
#include <list>
#include <algorithm>

using namespace std;

template<class InIter>
void show range (const char *msg, InIter start, InIter end);

template<class InIter>
bool disjoint (InIter start, InIter end,
InIter start2, InIter end2);

int main()

{

list<char> 1stl, 1lst2, 1st3;

for (int i=0; i < 5; i++) lstl.push back('A'+i);
for(int i=6; i < 10; i++) lst2.push back('A'+i);
for (int i=8; i < 12; i++) lst3.push back('A'+i)

i

show_range ("Contents of 1lstl: ", lstl.begin(), lstl.end());

Chapter 4: Algorithms, Function Objects, and Other STL Components 241
show_range ("Contents of 1lst2: ", lst2.begin(), lst2.end());
show_range ("Contents of 1lst3: ", 1lst3.begin(), 1lst3.end());
cout << endl;
// Test lstl and 1lst2.
if (disjoint (1lstl.begin(), 1lstl.end(), lst2.begin(), lst2.end()))

cout << "lstl and lst2 are disjoint\n";

else cout << "lstl and lst2 are not disjoint.\n";

// Test 1lst2 and 1lst3.

if (disjoint (1lst2.begin(), 1lst2.end(), lst3.begin(), 1lst3.end()))

cout << "lst2 and lst3 are disjoint\n";

else cout << "lst2 and 1lst3 are not disjoint.\n";

return 0;

}

// Show a range of elements.
template<class InIter>

void show range (const char *msg, InIter start,

InIter itr;
cout << msg;

for(itr = start; itr != end; ++itr)
cout << *itr << " ";
cout << endl;

}

InIter end)

// This function is an algorithm that determines if the contents of
// two ranges are disjoint. That is, if they contain no elements

// in common.
template<class InIter>
bool disjoint (InIter start, InIter end,
Inlter start2, InIter end2) ({

InIter itr;

for(; start != end; ++start)
for(itr = start2; itr != end2; ++itr)
if (*start == *itr) return false;

return true;

}

The output is shown here:

Contents of 1lstl: A B
Contents of 1st2: G H
Contents of 1st3: I J

CDE
IJ
K L

lstl and 1lst2 are disjoint
lst2 and 1lst3 are not disjoint.

42

Herb Schildt's C++ Programming Cookbook

Bonus Example: Use a Predicate with a Custom Algorithm

It’s an easy matter to add a predicate, such as a comparison function, to an algorithm.
Simply specify a generic type for the function and then include a parameter of that type in
the argument list. Inside the algorithm, call the function when it is needed through its
parameter. For example, here is an overload of disjoint() that lets you specify a predicate
that determines when one element is equal to another:

// This version of disjoint() lets you specify a comparison function
// that determines when two elements are equal.
template<class InIter, class Comp>
bool disjoint (InIter start, InIter end,
Inlter start2, InIter end2, Comp cmpfn) {

InIter itr;

for(; start != end; ++start)
for(itr = start2; itr != end2; ++itr)
if (cmpfn(*start, *itr)) return false;

return true;

}

Pay special attention to the cmpfn parameter. It can receive either a function pointer or

a function object. It then uses this function to determine when two elements are equal. The
following program demonstrates this version of disjoint() to ignore case differences when
determining if two ranges of characters are disjoint. It uses the binary predicate function
equals_ignorecase() to determine when two characters are equal independently of case
differences.

// Demonstrate a version of disjoint() that takes a comparison function.
#include <iostream>

#include <list>

#include <algorithms>
#include <cctype>

using namespace std;

template<class InIters>

void show range (const char *msg, InIter start, InIter end);
template<class InIter>
bool disjoint (InIter start,

InTter start2,

InIter end,
InIter end2) ;

// Overload disjoint ()
template<class InIter,
bool disjoint (InIter
InIter

bool equals ignorecase (char chl,

to take a comparison function.
class Comp>

start, InIter end,
start2, InIter end2, Comp cmpfn);

char ch2) ;

Chapter 4: Algorithms, Function Objects, and Other STL Components

int main ()

{

}

list<char> 1lstl, 1lst2;

for(int i=0; i < 5; i++) lstl.push back('A'+i);
for (int i=2; i < 7; i++) lst2.push back('a'+i);

show_range ("Contents of 1lstl: ", lstl.begin(),
show_range ("Contents of 1lst2: ", 1lst2.begin(),

cout << endl;

// Test 1lstl and lst2.

lstl.end()) ;
1st2.end()) ;

cout << "Testing lstl and 1lst2 in a case-sensitive manner.\n";

if (disjoint (lstl.begin(), lstl.end(), lst2.begin(),

cout << "lstl and lst2 are disjoint\n";

else cout << "lstl and lst2 are not disjoint.\n";

cout << endl;

// Test lstl and 1lst2, but ignore case differences.

cout << "Testing lstl and lst2 while ignoring case differences.\n";
if (disjoint (lstl.begin(), lstl.end(), lst2.begin(),

equals_ignorecase))
cout << "lstl and lst2 are disjoint\n";

else cout << "lstl and lst2 are not disjoint.\n";

return 0;

// Show a range of elements.
template<class InIter>

}

// This function is an algorithm that determines if the contents of
// two ranges are disjoint. That is,

void show range (const char *msg, InIter start,

InIter itr;
cout << msg;
for(itr = start; itr != end; ++itr)

cout << *itr << " ";
cout << endl;

// in common.
template<class InIter>

bool disjoint (InIter start, InIter end,
InIter start2, InIter end2)

Inlter itr;

InIter end)

lst2.end()))

1lst2.end(),

{

if they contain no elements

23

244 Herb Schildt's C++ Programming Cookbook

for(; start != end; ++start)
for(itr = start2; itr != end2; ++itr)
if (*start == *itr) return false;

return true;

}

// This overload of disjoint() lets you specify a comparison function
// that determines when two elements are equal.
template<class InIter, class Comp>
bool disjoint (InIter start, InIter end,
InIter start2, InIter end2, Comp cmpfn) {

Inlter itr;

for(; start != end; ++start)
for(itr = start2; itr != end2; ++itr)
if (cmpfn(*start, *itr)) return false;

return true;

}

// This function returns true if chl and ch2 represent the
// same letter despite case differences.
bool equals ignorecase (char chl, char ch2) ({

if (tolower (chl) == tolower (ch2)) return true;

return false;

}
The output is shown here:

Contents of 1lstl: A

B CDE
Contents of 1lst2: cde f g
Testing 1lstl and 1lst2 in a case-sensitive manner.
lstl and 1lst2 are disjoint.

Testing 1lstl and 1lst2 while ignoring case differences.
lstl and 1lst2 are not disjoint.

Options and Alternatives

Although creating your algorithm is quite easy, as the preceding examples show, often you
won't need to. In many cases, you can achieve the desired result by using for_each() or
transform() and specifying a function that performs the desired operation. In other cases,
you may be able to use the predicate forms of one of the other standard STL algorithms. Of
course, when neither of these approaches works, it is a simple matter to create your own
algorithm.

Chapter 4: Algorithms, Function Objects, and Other STL Components 245

Use a Built-In Function Object

I Key Ingredients

Headers Classes Functions

<functional> divides ret-type operator(arg-list)
equal_to
greater
greater_equal
less
less_equal
logical_and
logical_not
logical_or
minus
modulus
multiplies
negate
not_equal_to
plus

This recipe shows how to use the built-in function objects defined by the STL. An overview
of function objects is presented near the start of this chapter, but it will be helpful to begin
by summarizing the key points:

e Function objects are instances of classes that define operator().

¢ A function object can be used in place of a function pointer, such as when passing
a predicate to an algorithm.

¢ There are two types of function objects: unary and binary. A unary function object
requires one argument; a binary function object requires two.

¢ Function objects offer more flexibility, and in some cases, may be more efficient than
function pointers.

The STL provides several built-in function objects, which are the subject of this recipe. It
is also possible to create your own function objects. This is described by the following recipe.

Step-by-Step
To use a built-in function object involves these steps:
1. Create an instance of the desired function object. Specify the type of data upon
which it will operate in its type argument.

2. Pass the object created in Step 1 as an argument to any algorithm that requires
a function argument.

246

Herb Schildt's C++ Programming Cookbook

Discussion
All of the built-in function objects are template classes, which means that they can work on
any type of data for which their associated operation is defined. The built-in function
objects use the header <functional>.

The STL defines several binary function objects and two unary function objects. The
unary function objects are logical_not and negate. The built-in binary function objects are
shown here.

plus minus multiplies divides modulus
equal_to not_equal_to greater greater_equal less
less_equal logical_and logical_or

Each function object performs the action implied by its name. For example, negate returns
the negation of a value, less returns true if one value is less than another, and divides
returns the result of dividing one value by another.

The two function objects used by the example are negate and multiplies. Here is how
they are declared:

template <class T> struct negate : unary_function<T, T> {
T operator() (const T & a) const;

5

template <class T> struct multiples : binary_function<T, T, T> {
T operator() (const T & a, const T & b) const;
b

Notice that these are declared using the keyword struct. Recall that in C++, struct creates a
class type. The other function objects are declared in a similar fashion.
To use a function object, you must first construct one. For example,

negate<ints> ()
constructs a negate object for use on operands of type int, and
multiplies<double, doubles()

constructs a multiplies object for use on double operands.
Often, an instance of a function object is not constructed until it is actually passed to an
algorithm. For example, this statement:

transform(startl, endl, start2, negate<doublex>());

constructs a negate function object and passes it to transform() in one step. Frequently,
there is no need to construct a stand-alone instance.

Example

The following example demonstrates the unary function object negate and the binary
function object multiplies. The same techniques apply to any built-in function object.

Chapter 4: Algorithms, Function Objects, and Other STL Components 247

NOTE Another example that uses a built-in function object is found in Sort a Container. It uses
the greater function object to sort a container in reverse order.

// Demonstrate negate and multiplies function objects.

#include <iostream>
#include <vector>
#include <algorithms>
#include <functionals>

using namespace std;
template<class T> void show(const char *msg, T cont) ;

int main/()

{

vector<int> v, v2, result(10);

for (unsigned i=0; i < 10; ++i) v.push back(i);
for (unsigned i=0; i < 10; ++i) v2.push back(i);

show ("Contents of v:\n", v);
show ("Contents of v2:\n", v2);
cout << endl;

// Multiply v and v2 together.
transform(v.begin(), v.end(), v2.begin(), result.begin(),
multiplies<int>()) ;

show ("Result of multiplying the elements in v with those in v2:\n",
result) ;
cout << endl;

// Next, negate the contents of result.
transform(v.begin(), v.end(), v.begin(), negate<ints>());

show ("After negating v:\n", v);

return O;

}

// Display the contents of a container.
template<class T> void show(const char *msg, T cont) {
cout << msg;

T::iterator itr;
for(itr=cont.begin(); itr != cont.end(); ++itr)

cout << *itr << " ";

cout << "\n";

248 Herb Schildt's C++ Programming Cookbook

The output is shown here:

Contents of v:
01234567829
Contents of v2:
01234567829

Result of multiplying the elements in v with those in v2:
01 4 9 16 25 36 49 64 81

After negating v:
0 -1-2 -3 -4 -5 -6 -7 -8 -9

Options and Alternatives
As a general rule, if a built-in function object will handle the situation, you should use it. In
cases in which it won't, you can create your own function object, as described in the next
recipe. Another alternative is to pass a pointer to a standard function. For example, given a
container that contains a character sequence, you can pass the islower() function to
remove_if() to remove all lowercase letters.

A function object can have a value bound to it through the use of a binder. See Use a
Binder for details.

'

Create a Custom Function Object

I Key Ingredients

Headers Structures Functions and Typedefs

<functional> binary_function argument_type
result_type

<functional> unary_function first_argument_type
second_argument_type
result_type

result_type operator(argument_type arg)
result_type
operator(first_argument_type arg1,
second_argument_type arg2)

One of the key components of the STL is the function object. As explained in Function Object
Overview, a function object is an instance of a class that implements operator(). Thus, when
the function call operator, which is (), is executed on the object, operator() is executed. A
function object can be passed to any algorithm that requires a function pointer. Thus, a

Chapter 4: Algorithms, Function Objects, and Other STL Components

function object can be used as a predicate. There are several built-in function objects, such as
less, and their use is described by the preceding recipe. You can also create your own
function objects. This recipe shows the process.

Before we begin, a few words about why you might want to create your own function
objects. At first glance, it may seem that function objects require a bit more work than simply
using function pointers but offer no advantages. This is not the case. Function objects expand
the scope and power of the STL in three ways.

First, a function object can provide a more efficient mechanism by which functions are
passed to algorithms. For example, it is possible for the compiler to in-line a function object.
Second, using a function object can simplify and better structure the implementation of
complicated operations, because the class that defines a function object can hold values and
provide additional capabilities. Third, a function object defines a type name. A function
does not. This enables function objects to be specified as template type arguments. Therefore,
while there is nothing wrong with using function pointers where applicable, function objects
offer a powerful alternative.

Step-by-Step

To create a function object involves these steps:

1. Create a class that implements operator().

2. For the greatest flexibility, have the class from Step 1 inherit either the
unary_function or binary_function structure, depending on whether you are
creating a unary or binary function object. These define standard type names
for the function's argument(s) and return type.

3. When implementing the class, avoid creating side effects.

Discussion

To create a function object, define a class that overloads the operator() function and then
create an instance of that class. This instance can be passed to an algorithm, which can then
call the operator() function through the instance.

There are two types of function objects: unary and binary. A unary function object
implements operator() such that it takes one argument. For a binary function object,
operator() takes two arguments. As they are used with STL algorithms, each argument
receives an element from the range(s) on which the algorithm is operating. Thus, the type
of argument must be compatible with the type of element passed to it.

All of the built-in STL function objects are template classes. Your function objects can
also be defined as template classes, but there is no requirement for this. Sometimes, a
custom function object serves a specific purpose and a template version is not useful.

To gain the greatest flexibility for your function object, your class should also inherit one
of these structures defined by the STL:

template <class Argument, class Result> struct unary function {
typedef Argument argument_ type;
typedef Result result type;

Vi

29

250

Herb Schildt's C++ Programming Cookbook

template <class Argumentl, class Argument2, class Results>
struct binary function {

typedef Argumentl first argument type;

typedef Argument2 second argument_ type;

typedef Result result type;

i

A class that creates a unary function object inherits unary_function. A class that creates a
binary function object inherits binary_function. Both unary_function and binary_function
are declared in the <functional> header. In general, they must be inherited as public, which
is the default for structures.

The unary_function and binary_function structures provide typedefs for the argument
type(s) and the return type of the function object. These names are used by some adaptors and
may be helpful in other cases. Therefore, you should use these names in your function object.
In other words, you should use result_type as the return type for operator(). You should use
argument_type as the type of the argument to operator() for a unary function object and use
first_argument_type and second_argument_type as the types of the arguments for a binary
function object. Therefore, the general forms of operator() look like these:

result_type operator(argument_type arg)
result_type operator(first_argument_type argl, second_argument_type arg2)

A function object should not create side effects. In other words, it should not perform
actions unrelated to its intended purpose. For example, a function object whose purpose is
to compare two elements for equality should not modify one of the elements in the process.

Example

The following example shows examples both unary and binary function objects. It reworks
the example program for the recipe Use transform() to Change a Sequence. In that version,
function pointers are passed to the transform() algorithm. The functions compute the
reciprocal of a value and the midpoint between two values. This version of the program
uses function objects instead of function pointers. It creates a unary function object class
called reciprocal that computes the reciprocal of a value. It creates a binary function object
class called midpoint that computes the midpoint between two values.

// Demonstrate both unary and binary function objects.

//
// This program reworks the example shown in the recipe
// "Use transform() to Change a Sequence." That program

// used function pointers in calls to transform() .
// This version uses function objects.

#include <iostream>
#include <vectors>
#include <algorithm>
#include <functional>

Chapter 4: Algorithms, Function Objects, and Other STL Components 251

using namespace std;

// A function object that computes a reciprocal.
class reciprocal : unary function<double, double> {
public:

result_type sum;

result type operator () (argument_ type val) {
if (val == 0.0) return 0.0;
return 1.0 / val; // return reciprocal
}
Vi

// A function object that finds the midpoint between
// two values.
class midpoint : binary function<int, int, double> {
public:

result type operator () (first_argument type a, second argument type b)

return((a-b) / 2) + b;

}

i

template<class T> void show(const char *msg, vector<Ts> vect);

int main()

{

int 1i;
vector<double> v;

// Put values into v.
for(i=1; i < 10; ++1i) v.push back((double)i) ;

show ("Initial contents of v:\n", Vv);
cout << endl;

// First, demonstrate a unary function object.

// Transform v by applying the reciprocal function object.

// Put the result back into v.

cout << "Use a unary function object in calls to transform() to\n";
cout << "compute reciprocals for v and store the results back in v.\n";
transform(v.begin(), v.end(), v.begin(), reciprocal()) ;

show ("Transformed contents of v:\n", Vv);
cout << endl;

// Transform v a second time, putting the result into a new sequence.
cout << "Use a unary function object to transform v again.\n";

cout << "This time, store the results in v2.\n";

vector<double> v2(10) ;

transform(v.begin(), v.end(), v2.begin(), reciprocall());

252 Herb Schildt's C++ Programming Cookbook

show ("Here is v2:\n", v2);
cout << endl;

vector<int> v3, v4, v5(10);
for(i = 0; i < 10; ++i) v3.push back(i);
for(i = 10; i < 20; ++1i) 1if(i%2) v4.push back(i); else v4.push back(-i);

show ("Contents of v3:\n", v3);
show ("Contents of v4:\n", v4);
cout << endl;

// Now, demonstrate a binary function object.

cout << "Now, use a binary function object to find the midpoints\n";
cout << "between elements in v3 and v4 and store the results in v5.\n";
transform(v3.begin(), v3.end(), v4.begin(), v5.begin(), midpoint());

show ("Contents of v5:\n", Vv5);

return 0;

}

// Display the contents of a vector<ints.
template<class T> void show(const char *msg, vector<Ts> vect) {
cout << msg;
for (unsigned i=0; 1 < vect.size(); ++1)
cout << vect[i] << " ";
cout << "\n";

}
The output is shown here:

Initial contents of v:
123456 7829

Use a unary function object in calls to transform() to
compute reciprocals for v and store the results back in v.
Transformed contents of v:

1 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 0.111111

Use a unary function object to transform v again.
This time, store the results in v2.

Here is v2:

1234567890

Contents of v3:
012345672829

Contents of v4:

-10 11 -12 13 -14 15 -16 17 -18 19

Now, use a binary function object to find the midpoints
between elements in v3 and v4 and store the results in v5.
Contents of v5:

-5 6 -58 -5 10 -5 12 -5 14

Chapter 4: Algorithms, Function Objects, and Other STL Components

Bonus Example: Use a Function Object to Maintain State Information

Although the preceding example demonstrates how to create two different function objects,
neither shows the real power of function objects. For example, function objects can be used
with binders and negators, and this is described in Use a Binder and Use a Negator. Another
important feature of function objects is their ability to maintain state information. It is
possible for the class that defines a function object to include instance variables that store
information about the use of the function object, such as the outcome of some computation.
This can be useful in a variety of contexts. For example, a variable could hold the success or
failure of an operation. The ability to maintain state information greatly expands the types
of problems to which a function object can be applied.

The following example demonstrates the ability of a function object to store state
information by reworking the summation function used in the for_each() example shown
in Cycle Through a Container with for_each(). In that example, a pointer to a function called
summation() was passed to for_each(). This function constructed a running total of the
values in the range over which for_each() operated. The summation() function used a
static variable to hold the current sum. Each time the function was called, the value passed
to the function was added to the running total and the running total (i.e., the current
summation) was returned. While this approach worked, it is hardly elegant. A far better
approach is to convert summation() into a function object in which the running total is held
in an instance variable. Not only does this allow the summation to be obtained without a
function call, it also enables the total to be reset.

Here is one way to create a summation function object class:

// A function object that computes an integer summation.
class summation : unary function<int, voids> {
public:

argument_ type sum;

summation() { sum = 0; }

// Add to the running total and return a
// reference to the invoking object.
result type operator () (argument type i) ({
sum += 1i;
1
}i

Notice that the running total is held in a field called sum inside the summation class. This
allows the summation to be obtained from the object, rather than having to invoke a
function. To reset the object, simply assign zero to sum.

The following program reworks the for_each() example so that it uses the summation
function object:

// Use a function object with for each().

#include <iostream>
#include <vectors>
#include <algorithms>
#include <functionals>

253

254

Herb Schildt's C++ Programming Cookbook

using namespace std;

// A function object that computes an integer summation.
class summation : unary function<int, voids> {
public:

argument type sum;

summation() { sum = 0; }

// Add to the running total and return a

// reference to the invoking object.

result type operator () (argument type i) {
sum += 1i;

1

Vi

int main()

{

vector<ints> v;
for (int i=1; i < 11; i++) v.push back(i);

cout << "Contents of v: ";

for (unsigned i=0; i < v.size(); ++1)
cout << v[i] << " ";

cout << "\n";

// Declare a function object that receives the object
// returned by for each().
summation s;

// This calls for each() with a function object, rather than
// a function pointer. The function object returned by

// for each() can be used to obtain the summation total.

s = for_each(v.begin(), v.end(), summation()) ;

cout << "Summation of v: " << s.sum << endl;

// Change the value of v[4] and recompute the summation.
// Because a new function object is created, the

// summation once again begins at zero.

cout << "Setting v[4] to 99\n";

vid]l= 99;

s = for each(v.begin(), v.end(), summation());
cout << "Summation of v is now: " << s.sum;
return 0;

Notice how for_each() is called:

s = for each(v.begin(), v.end(), summation());

Chapter 4: Algorithms, Function Objects, and Other STL Components 255

It is passed a new instance of summation. This function object is used by this invocation of
for_each(). Recall that the for_each() algorithm returns the function object that it is passed.
In this case, this object is assigned to s, which is a summation object. This means that s will
contain the summation. This value can be obtained from s.sum.

Options and Alternatives
When using a function object, you have the option of binding a value to it. This procedure is
described in Use a Binder and Use a Negator.

In some cases, you can use a built-in function object, rather than a custom one. For
example, if you want to determine if one value is greater than another, you can use the
greater function object. See Use a Built-In Function Object for details.

Although function objects are more powerful than function pointers, there is nothing
wrong with using a function pointer in situations for which it is appropriate. For example, if
a vector holds characters, then it is fine to pass a pointer to the standard tolower() function
to transform() to convert letters to lowercase. In this case, there would be little, if any,
benefit in creating an entire class to handle this operation.

”~

Use a Binder

I Key Ingredients
Headers Classes Functions
<functional> template <class Op, class T>

binderlst<Op>
bind1st(const Op &bin_func_obj,
const T &value)
template <class Op, class T>
binder2nd<Op>
bind2nd(const Op &bin_func_obj,
const T &value)

The recipe shows how to bind a value to a function object. Recall that a binary function object
takes two parameters. Normally, these parameters receive values from the range or ranges
upon which the object is operating. For example, when sorting, the binary comparison
function receives pairs of elements from the range being ordered. While the default behavior
of binary function objects is quite useful, there are times when you will want to alter it. To
understand why, consider the following.

Suppose that you want to remove all elements from a sequence that are greater than
some value, such as 10. Your first thought, quite naturally, is to use the greater function
object. However, by default, greater receives both values from the range on which it is
operating. Thus, by itself, there is no way to have it compare elements from one sequence

256

Herb Schildt's C++ Programming Cookbook

with the value 10. To use greater for this purpose, you need some way to bind the value 10
to its right-hand operand. That is, you need some way to make greater perform the
following comparison:

val > 10

where val is an element from the sequence. Fortunately, the STL provides a mechanism,
called binders, that accomplishes this. A binder links a value to one of the arguments of
a binary function object. The outcome of a binder is a unary function object, which can be
used anywhere that any other unary function object can.

There are two binders defined by the STL: bind1st() and bind2nd(). This recipe
demonstrates their use.

Step-by-Step

To use a binder to bind a value to a function object involves these steps:

1. To bind a value to the first argument of a binary function object, call bind1st().
2. To bind a value to the second argument of a binary function object, call bind2nd().

3. Use the result of the binder anywhere that a unary predicate is required.

Discussion
The prototypes for bind1st() and bind2nd() are shown here:

template <class Op, class T>
binder1st<Op> bind1st(const Op &bin_func_obj, const T &uvalue)

template <class Op, class T>
binder2nd<Op> bind2nd(const Op &bin_func_obj, const T &value)

Here, bin_func_obj specifies the binary function object to which value will be bound. bind1st()
returns a unary function object (encapsulated as a binderlst object) that has bin_func_obj's
left-hand operand bound to value. bind2nd() returns a unary function object (encapsulated
in a binder2nd object) that has bin_func_obj's right-hand operand bound to value. For
example,

bindlst (less<double>, 0.01)
binds the value 0.01 to the first (left) argument of the less function object, and

bind2nd (less<double>, 0.01)

binds the value to the second (right) argument. Of the two, bind2nd() is the more
commonly used.

The binderlst and binder2nd classes represent the unary function objects returned by
the binders. They are also declared in <functional>. Normally, you won't use the binder1st
or binder2nd class directly. Instead, you will usually pass the outcome of a binder directly
to an algorithm. Therefore, binderl1st and binder2nd are not described further here.

Chapter 4: Algorithms, Function Objects, and Other STL Components

Because a binder converts a binary function object into a unary function object, the
result of a binder can be passed to any algorithm that requires a unary predicate. For
example, this passes a unary function object to find_if():

find_if(v.begin(), v.end(), bind2nd(less<int>, 19))

This causes find_if() to return an iterator to the first value in v that is less than 19.

Example

The following program demonstrates bind2nd(). It uses the remove_if() algorithm to
remove elements from a sequence based upon the outcome of a predicate. Recall that it has
this prototype:

template <class Forlter, class UnPred>
Forlter remove_if(Forlter start, Forlter end, UnPred pfn)

The algorithm removes elements from the sequence defined by start and end for which the
unary predicate defined by pfn is true. The algorithm returns a pointer to the new end of the
sequence, which reflects the deletion of the elements.

The following program removes all values from a sequence that are greater than the
value 10. Since the predicate required by remove_if is unary, we cannot simply use the
greater function object as-is because greater is a binary function object. Instead, we must
bind the value 10 to the second argument of greater using the bind2nd() binder.

// Demonstrate bind2nd() .

#include <iostream>
#include <list>
#include <functionals>
#include <algorithm>

using namespace std;

template<class InIters>
void show range (const char *msg, InIter start, InIter end);

int main()
list<int> 1st;
list<int>::iterator res itr;

for (unsigned i=1; i < 20; ++i) lst.push back(i);

show range ("Original sequence:\n", lst.begin(), lst.end());
cout << endl;

// Use bind2nd() to create a unary function object
// that will return true when a value is greater than 10.
// This is used by remove if() to remove all elements from
// lst that are greater than 10.
res_itr = remove if (lst.begin(), lst.end(),

bind2nd (greater<int>(), 10));

251

258

Herb Schildt's C++ Programming Cookbook

show_range ("Resulting sequence:\n", lst.begin(), res itr);

return O;

}

// Show a range of elements.
template<class InIter>
void show_range (const char *msg, InIter start, InIter end) {

InIter itr;
cout << msg;

for(itr = start; itr != end; ++itr)
cout << *itr << " ";
cout << endl;

}
The output produced by the program is shown here.

Original sequence:
123456 78910 11 12 13 14 15 16 17 18 19

Resulting sequence:
123456 78910

As the output shows, the resulting sequence contains the elements 1 through 10. Those
elements greater than 10 have been removed. Here is how it works. When remove_if()
executes, the binary function object greater receives an element from Ist in its first parameter
and the value 10 in its second, since the second parameter is bound to 10 using bind2nd().
Thus, for each element in the sequence, the comparison

element > 10
is evaluated. When it is true, the element is removed.
Options and Alternatives
Although bind2nd() is typically the more commonly used of the two binders, bind1st() is

available as an alternative. As explained, the bind1st() binder binds a value to the first
parameter. To see the effects of this, try substituting this line into the preceding program:

endp = remove if (lst.begin(), lst.end(), bindlst (greater<int>(), 10));

This causes elements from the sequence to be passed to the second parameter of greater,
with the value 10 bound to the first parameter. Thus, for each element in the sequence, the
following comparison is performed:

10 > element

Chapter 4: Algorithms, Function Objects, and Other STL Components 259

This causes greater to return true for elements that are less than 10. The output produced
after you have substituted bind1st() is shown here.

Original sequence:
1234546 78 910 11 12 13 14 15 16 17 18 19

Resulting sequence:
10 11 12 13 14 15 16 17 18 19

As you can see, those elements that are less than 10 have been removed.
Although valid, I dislike using bind1st() as just shown because it seems counterintuitive.
If you want to remove elements that are less than 10, it would be better to use this statement:

endp = remove if (lst.begin(), lst.end(), bind2nd(less<int>(), 10));

Here, the less function object is used and the results reflect what one would normally expect
to occur when less is employed. Using bind1st() and reversing the comparison achieves the
same results, but adds a bit of confusion for no reason.

rd

Use a Negator

I Key Ingredients

Headers Classes Functions

<functional> template <class Pred> unary_negate<Pred>
notl(const Pred &unary_pred)

template <class Pred> binary_negate<Pred>
not2(const Pred &binary_pred)

There is an object related to a binder, called a negator. The negators are notl() and not2().
They return the negation of (i.e., the complement of) whatever predicate they modify. The
negators streamline the STL because they enable you to efficiently adapt a predicate to
produce the opposite result, thus avoiding the need to create a second predicate. This recipe
demonstrates their use.

Step-by-Step
To use a negator involves these steps:

1. To negate a unary predicate, use not1().

2. To negate a binary predicate, use not2().

260

Herb Schildt's C++ Programming Cookbook

Discussion
The negators are notl() and not2(). They have these prototypes:

template <class Pred> unary_negate<Pred>
notl(const Pred &unary_pred)

template <class Pred> binary_negate<Pred>
not2(const Pred &binary_pred)

The not1() negator is for use with unary predicates, with the predicate to negate passed
in unary_pred. To negate binary predicates, use not2(), passing the binary predicate in
binary_pred. The result of both negators is a predicate that returns the negation of the
original predicate represented as either a unary_negate or binary_negate object.

Typically, you will not interact with the unary_negate or binary_negate class directly,
and they are not further described here. Instead, the outcome of not1() or not2() is typically
passed directly to an algorithm. For example, this statement removes elements from
a container if they are not equal to 'A":

remove if (v.begin(), v.end(), notl(bind2nd(equal to<char>(), 'A')));

Although equal_to is a binary function object, the binder bind2nd() converts it into a unary
object. This is why not1() rather than not2() is used.

Example

The following example demonstrates both not1() and not2(). First, it shows one way to sort
a sequence into descending order using the negation of the less function object to determine
sorting order. It then uses not1() to remove all elements not equal to H.

// Demonstrate notl() and not2().
#include <iostream>

#include <vectors>

#include <algorithms>

#include <functionals>

using namespace std;

template<class InIter>
void show range (const char *msg, InIter start, InIter end);

int main ()
vector<char> v;

for(int i=0; i < 26; i++) v.push back('A'+i);

show range ("Original ordering of v:\n", v.begin(), v.end());
cout << endl;

// Use not2() to reverse sort v.
sort (v.begin(), v.end(), not2(less<char>()));

Chapter 4: Algorithms, Function Objects, and Other STL Components

show_range ("After sorting v using not2(less<char>()):\n",
v.begin(), v.end());
cout << endl;

// Use notl() to remove all characters that are not equal to H.
vector<char>::iterator res_end;
res_end = remove if (v.begin(), v.end(),

notl (bind2nd (equal_to<char>(), 'H')));

show_range ("v after removing elements not equal to H:\n",
v.begin(), res_end);

return O;

}

// Show a range of elements.
template<class InIter>
void show range (const char *msg, InIter start, InIter end) {
InIter itr;

cout << msg;

for(itr = start; itr != end; ++itr)
cout << *itr << " ";

cout << endl;

}
It produces the following output:

Original ordering of v:
ABCDEFGHIJKLMNOPQRSTUVWIXYZ

After sorting v using not2 (less<char>()):
ZYXWVUTSRQPONMLKJIHGEFEDCEBA

v after removing elements not equal to H:
H

Options and Alternatives

Although negating the outcome of a predicate can be very useful and can streamline the
handling of many situations, it may not always be the best choice. Sometimes, you will
want to create a separate predicate that performs the negation. For example, consider a case
in which the negation of some operation can be performed more efficiently by computing
the negative result directly, rather than reversing the outcome of the affirmative result. In
this situation, creating a separate predicate is more efficient than first computing the result
and then negating it. In essence, you may encounter a case in which the negation is faster to
compute than the affirmative result. In this situation, it does not make sense to first compute
the affirmative and then negate it.

261

262 Herb Schildt's C++ Programming Cookbook

”~

Use the Pointer-to-Function Adaptor

I Key Ingredients
Headers Classes Functions
<functional> pointer_to_unary_function Result operator()(Arg arg) const;
<functional> pointer_to_binary_function Result operator()(Arg argl,
Arg2 arg2) const;
<functional> template <class Arg, class Result>
pointer_to_unary_function<

Arg, Result>
ptr_fun(Result (*func)(Arg))
template <class Argl, class Arg2,
class Result>
pointer_to_binary_function<
Argl, Arg2, Result>
ptr_fun(Result (*func)(Argl,
Arg2))

The header <functional> defines several classes, called function adaptors, that allow you to
adapt a function pointer to a form that can be used by various STL components. Several of
these adaptors are designed for situations beyond the scope of this book, but one is of
special interest because it solves a very common problem: allowing a function pointer to
be used with a binder or negator.

As preceding recipes have shown, it is possible to pass a pointer to a function (rather
than passing a function object) as a predicate to an algorithm. As long as the function
performs the desired operation, there is no trouble in doing this. However, if you want to
bind a value or use a negator with that function, then trouble will occur, because it is not
possible to apply these modifiers directly to function pointers. To allow functions to be used
with binders and negators, you will need to use the pointer-to-function adaptors.

Step-by-Step
To adapt a function pointer into a function object involves these steps:
1. To create a function object from a unary function, call ptr_fun(), passing in a pointer
to the unary function. The result is a unary function object.

2. To create a function object from a binary function, call ptr_fun(), passing in the
pointer to the binary function. The result is a binary function object.

Discussion
The pointer-to-function adaptor is ptr_fun(). Both of its forms are shown here:

Chapter 4: Algorithms, Function Objects, and Other STL Components

template <class Arg, class Result>
pointer_to_unary_function<Arg, Result>
ptr_fun(Result (*func)(Arg))

template <class Argl, class Arg2, class Result>
pointer_to_binary_function<Argl, Arg2, Result>
ptr_fun(Result (*func)(Argl, Arg2))

It returns either an object of type pointer_to_unary_function or an object of type
pointer_to_binary_function. These classes are shown here:

template <class Arg, class Result>
class pointer to unary function:
public unary function<Arg, Result>

{

public:
explicit pointer to unary function(Result (*func) (Arg)) ;
Result operator() (Arg arg) const;

i

template <class Argl, class Arg2, class Result>
class pointer to_binary function:
public binary function<Argl, Arg2, Result>

{
public:
explicit pointer to_binary function(
Result (*func) (Argl, Arg2));
Result operator () (Argl argl, Arg2 arg2) const;

Vi

You won't normally interact with these classes directly. Their main purpose is to construct
a function object that encapsulates func. For pointer_to_unary_function, operator() returns

func(arg)
And for pointer_to_binary_function, operator() returns
func(argl, arg2)

The result type of operator() is specified by the Result generic type. Therefore, an object of
these classes can be passed as an argument to a binder or negator.

Example

Here is an example that uses ptr_fun(). It creates a vector of character pointers that point to
character strings. It then uses the standard library function stremp() to find the pointer that
points to "Three". Since stremp() is not a function object, the adaptor ptr_fun() is used to
allow the value "Three" to be bound to stremp()'s second parameter using bind2nd(). Since
stremp() returns false on success, the negator not1() is applied to reverse this condition.

263

264 Herb Schildt's C++ Programming Cookbook

Without the use of ptr_fun(), it would not be possible to apply bind2nd() to stremp(). That
is, since stremp() is a function, it is not possible for it to be used with bind2nd() directly.

// Use a pointer-to-function adaptor.

#include <iostream>
#include <vectors>
#include <algorithms>
#include <functionals>
#include <cstring>

using namespace std;

template<class InIter>
void show_range (const char *msg, InIter start, InIter end);

int main/()

{

vector<char *> v;
vector<char *>::iterator itr;

v.push back ("One") ;

v.push back ("Two") ;

v.push back ("Three") ;

v.push back ("Four") ;

v.push back ("Five") ;

show_range ("Sequence contains: ", v.begin(), v.end());

cout << endl;
cout << "Searching sequence for Three.\n\n";

// Use a pointer-to-function adaptor.

itr = find if (v.begin(), v.end(),
notl (bind2nd (ptr_ fun(strcmp), "Three")));
if (itr != v.end()) {
cout << "Found!\n";
show_range ("Sequence from that point is: ", itr, v.end());
1
return 0;

}

// Show a range of elements.
template<class InIter>
void show range(const char *msg, InIter start, InIter end) {

InIter itr;

cout << msg;

for(itr = start; itr != end; ++itr)
cout << *itr << " ";

cout << endl;

Chapter 4: Algorithms, Function Objects, and Other STL Components 265

The program's output is shown here.
Sequence contains: One Two Three Four Five
Searching sequence for Three.

Found!
Sequence from that point is: Three Four Five

Options and Alternatives
Another approach to adapting a function is to create your own function object class. Have
its operator() call the function and return the result. While far less elegant than using a
pointer-to-function adaptor, this technique may be useful in situations in which the result of
the function is processed a bit before use.

The ptr_fun() adaptor works only on non-member functions. The STL defines adaptors
for member functions, which are called mem_fun() and mem_fun_ref(). These are
collectively called the pointer-to-member function adaptors.

rd

Use the Stream lterators

I Key Ingredients

Headers Classes Functions and Operators

<iterator> istream_iterator *
++

<iterator> ostream_iterator *
++

<iterator> istreambuf_iterator *
++

bool equal(istreambuf_iterator<CharType,
Attr> &ob)

<iterator> ostreambuf_iterator *
++
bool failed const throw()

The STL defines four classes that enable you to obtain iterators to I/O streams. These are
commonly referred to as the stream iterators, and they are among some of the STL's most
interesting objects because they allow an I/O stream to be operated on in much the same
way as you operate on containers. The benefits of the stream iterators are most apparent

266

Herb Schildt's C++ Programming Cookbook

when used with algorithms, where a stream can provide input to or receive output from
some action. Although most I/O operations will still use the standard I/O operators and
functions, the ability to apply algorithms to streams offers a new way to think about I/O
programming. The stream iterators can also simplify certain difficult or tedious I/O
situations. Although an in-depth discussion of the stream iterators is quite lengthy and is
beyond the scope of this book, this recipe describes the basic approach needed to use them.

Step-by-Step
To use the stream iterators to input data involves these steps:
1. To create an iterator to a formatted input stream, construct an object of type
istream_iterator, specifying the input stream.

2. To create an iterator to a character-based input stream, construct an object of type
istreambuf_iterator, specifying the input stream.

3. To input data from the stream, dereference the iterator. Then, increment the iterator.
This causes it to read the next item from the stream. Repeat this process until all
data is read or the end of the stream is reached.

4. An iterator that indicates end-of-stream is constructed by the default constructor.
To use the stream iterators to output data involves these steps:
1. To create an iterator to a formatted output stream, construct an object of type

ostream_iterator, specifying the output stream.

2. To create an iterator to a character-based output stream, construct an object of type
ostreambuf_iterator, specifying the output stream.

3. To output data to the stream, assign the value through the dereferenced iterator.
There is no need to increment the iterator. Each assignment automatically advances
the output.

4. If an output error occurs, the failed() function will return true.

Discussion

The STL defines four stream iterator classes. They are declared in <iterator> and are
shown here.

Class Description

istream_iterator An input stream iterator.
istreambuf_iterator An input streambuf iterator.
ostream_iterator An output stream iterator.
ostreambuf_iterator An output streambuf iterator.

Chapter 4: Algorithms, Function Objects, and Other STL Components

One important difference between the iterators is that istream_iterator and
ostream_iterator can directly operate on various types of data, such as int or double. The
istreambuf_iterator and ostreambuf_iterator iterators can operate only on characters.
However, the advantage that istreambuf_iterator and ostreambuf_iterator offer is that they
enable you to perform low-level file I/O. An overview of each class is given here.

The Formatted Stream Iterators
The istream_iterator and ostream_iterator iterators are capable of reading or writing
formatted data, which means that they can read or write character, integer, floating point,
Boolean, and string values. This makes them especially useful when operating on streams
that contain human-readable information. For example, you could use ostream_iterator to
write an integer to cout, or istream_iterator to read a string from cin.

The istream_iterator class supports input iterator operations on a stream. Its template
definition is shown here:

template <class T, class CharType=char, class Attr = char_traits<CharType>,
class Diff = ptrdiff_t> class istream_iterator:
public iterator<input_iterator_tag, T, Diff, const T *, const T &>

Here, T is the type of data being transferred, CharType is the character type (char or wchar_t)
that the stream is operating upon, and Diff is a type capable of holding the difference
between two addresses. Notice that T is the only generic type parameter that does not
default. Therefore, it must be specified when an istream_iterator is created. istream_iterator
has the following constructors:

istream_iterator()
istream_iterator(istream_type &strean)
istream_iterator(const istream_iterator<T, CharType, Attr, Diff> &ob)

The first constructor creates an iterator that indicates end-of-stream. This object can be used
to check for the end of input. (That is, it will compare equal to end-of-stream.) The second
creates an iterator to the stream specified by stream. It then reads the first object from the
stream. The type istream_type is a typedef that specifies the type of the input stream. The
third form is istream_iterator's copy constructor.

The istream_iterator class defines the following operators: —>, *, ++. The —> and the *
act as expected. The ++ operator requires a bit of explanation. When used in its prefix form,
the ++ causes the next value to be read from the input stream. When used in its postfix
form, the current value of the stream is stored and then the next value of the stream is read.
In either case, to retrieve the value, use the * operator on the iterator. The operators == and
!= are also defined for objects of type istream_iterator.

The ostream_iterator class supports output iterator operations on a stream. Its template
definition is shown here:

template <class T, class CharType=char, class Attr = char_traits<CharType> >
class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void>

267

268

Herb Schildt's C++ Programming Cookbook

Here, T is the type of data being transferred and CharType is the character type (char or
wchar_t) that the stream is operating upon. Notice that T is the only generic type parameter
that does not default. Thus, it must be specified when an ostream_iterator is created.
ostream_iterator has the following constructors:

ostream_iterator(ostream_type &strean)
ostream_iterator(ostream_type &stream, const CharType *delim)
ostream_iterator(const ostream_iterator<T, CharType, Attr> &ob)

The first creates an iterator to the stream specified by stream. The type ostream_type is a
typedef that specifies the type of the output stream. The second form creates an iterator to
the stream specified by stream and uses the delimiters specified by delim. The delimiters are
written to the stream after every output operation. The third form is ostream_iterator's copy
constructor.

The ostream_iterator class defines the following operators: =, *, ++. For ostream_iterator,
the ++ operator has no effect. To write to the output stream, simply assign a value through
the * operator.

The Low-Level Stream Iterators
The low-level stream iterators are istreambuf_iterator and ostreambuf_iterator. These
iterators read and write characters, not formatted data. The principal advantage of the
low-level stream iterators is that they give your program access to a raw 1/O stream on a
byte-by-byte basis, avoiding character translations that are possible with the formatted
stream iterators. When using these iterators, there is a one-to-one correspondence between
what is in the stream and what is written or read via the iterator.

The istreambuf_iterator class supports low-level character-input iterator operations on
a stream. Its template definition is shown here:

template <class CharType, class Attr = char_traits<CharType> >
class istreambuf_iterator:
public iterator<input_iterator_tag, CharType, typename Attr::off_type,
CharType *, CharType &>

Here, CharType is the character type (char or wchar_t) that the stream is operating upon.
istreambuf_iterator has the following constructors:

istreambuf_iterator() throw()
istreambuf_iterator(istream_type &stream) throw()
istreambuf_iterator(streambuf_type *streambuf) throw()

The first constructor creates an iterator that indicates end-of-stream. The second creates an
iterator to the stream specified by stream. The type istream_type is a typedef that specifies
the type of the input stream. The third form creates an iterator to the stream specified by
streambuf. The type streambuf_type is a typedef that specifies the type of the stream buffer.
The istreambuf_iterator class defines the following operators: *, ++. The ++ operator
works as described for istream_iterator. To read a character from the string, apply * to

Chapter 4: Algorithms, Function Objects, and Other STL Components

the iterator. To move to the next character, increment the iterator. The operators == and
!= are also defined for objects of type istreambuf_iterator.
istreambuf_iterator defines the member function equal(), which is shown here:

bool equal(istreambuf_iterator<CharType, Attr> &ob)

Its operation is a bit counterintuitive. It returns true if the invoking iterator and ob both
point to the end of the stream. It also returns true if both iterators do not point to the end of
the stream. There is no requirement that what they point to be the same. It returns false
otherwise. The == and != operators work in the same fashion.

The ostreambuf_iterator class supports low-level character-output iterator operations
on a stream. Its template definition is shown here:

template <class CharType, class Attr = char_traits<CharType> >
class ostreambulf_iterator:
public iterator<output_iterator_tag, void, void, void, void>

Here, CharType is the character type (char or wchar._t) that the stream is operating upon.
ostreambuf_iterator has the following constructors:

ostreambuf_iterator(ostream_type &stream) throw()
ostreambuf_iterator(streambuf_type *streambuf) throw()

The first creates an iterator to the stream specified by stream. The type ostream_type is a
typedef that specifies the type of the input stream. The second form creates an iterator using
the stream buffer specified by streambuf. The type streambuf_type is a typedef that specifies
the type of the stream bulffer.
The ostreambuf_iterator class defines the following operators: =, *, ++. The ++ operator
has no effect. To write a character to the stream, simply assign a value through the * operator.
The ostreambuf_iterator class also defines the function failed(), as shown here:

bool failed() const throw()

It returns false if no failure has occurred and true otherwise.

Example

The following program demonstrates the how istream_iterator and ostream_iterator can be
used to read from cin and write to cout. Although you will not normally use the stream
iterators for this purpose, the program clearly illustrates how they work. Of course, the real
power of the stream iterators is found when they are used with algorithms, which is
demonstrated by the bonus example that follows.

// Use istream iterator and ostream iterator to read from cin and write to
// cout.

#include <iostream>
#include <iterator>
#include <strings
#include <vectors

269

210 Herb Schildt's C++ Programming Cookbook

using namespace std;

int main()

{
unsigned 1i;
double d;
string str;
vector<int> vi;
vector<double> vd;
vector<string> vs;

// Use istream iterator to read from cin.
// Create an input stream iterator for int.

cout << "Enter some integers, enter 0 to stop.\n";
istream iterator<int> int_itr(cin);

do {
i = *int itr; // read next int
if(i 1= 0) {
vi.push back(i); // store it

++int_itr; // input next int

}

} while (i != 0);

// Create an input stream iterator for doubles
cout << "Enter some doubles, enter 0 to stop.\n";
istream iterator<double> double itr(cin);
do {
d = *double itr; // read next double
if(d != 0.0) {
vd.push back(d); // store it
++double itr; // input next double
}

} while (4 != 0.0);

// Create an input stream iterator for string.
cout << "Enter some strings, enter 'quit' to stop.\n";
istream iterator<string> string itr(cin);

do {
str = *string itr; // read next string
if (str != "quit") |

vs.push back(str); // store it
++string itr;

} while (str != "quit"); // input next string
cout << endl;

cout << "Here is what you entered:\n";

for(i=0; i < vi.size(); i++) cout << vil[i] << " ";

cout << endl;

for(i=0; i < vd.size(); i++) cout << vd[i] << " ";

Chapter 4: Algorithms, Function Objects, and Other STL Components

cout << endl;

for(i=0; i < vs.size(); i++) cout << vs[i] << " ";

// Now, use ostream iterator to write to cout.

// Create an output iterator for string.

ostream iterator<string> out_ string itr(cout) ;
*out string itr = "\n";

*out string itr = string("\nThis is a string\n");
*out string itr = "This is too.\n";

// Create an output iterator for int.
ostream iterator<int> out_int itr(cout);
*out_int itr = 10;

*out string itr = " ";

*out_int_itr = 15;

*out_string itr = " ";

*out_int itr = 20;

*out string itr = "\n";

// Create an output iterator for bool.
ostream_ iterator<bool> out bool itr(cout);
*out _bool itr = true;

*out string itr = " ";

*out_bool_itr = false;

return O;

}
A sample run is shown here:

Enter some integers, enter 0 to stop.
1230

Enter some doubles, enter 0 to stop.

1.1 2.2 3.3 0.0

Enter some strings, enter 'quit' to stop.
This is a test

quit

Here is what you entered:
123

1.1 2.2 3.3

This is a test

This is a string
This is too.

10 15 20

10

21

212

Herb Schildt's C++ Programming Cookbook

Bonus Example: Create an STL-Based File Filter

Although using stream iterators to write to or read from the console, as is done in the
previous example, is an intriguing use, it does not show their real power. It is not until you
combine the stream iterators with algorithms does their real potential emerge. The following
program shows an example of how they can streamline an otherwise tedious programming
project.

As explained, the low-level stream iterators operate on characters, bypassing the buffering
and possible character translations that might occur with the high-level stream iterators. This
makes them perfect for manipulating the contents of a file through an algorithm. Being able to
operate on the contents of a file through one or more STL algorithms is a powerful concept. It is
often possible to implement a sophisticated file operation that would normally require several
lines of code in just a single call to an algorithm. The example shown here demonstrates this. It
implements a relatively simple file filter.

A file filter is a utility program that removes or replaces specific information when it
copies a file. The following program is a simple example of such a filter. It copies a file and
in the process replaces one character with another. The name of the file, the character to
replace, and the replacement character are specified on the command line. To handle the
replacement, it uses the character stream iterators and the replace_copy() algorithm.

// Use istreambuf iterator, ostreambuf iterator, and replace copy ()
// to filter a file.

#include <iostream>
#include <fstreams

#include <iterators>
#include <algorithms>

using namespace std;

int main(int argc, char *argvl([])

{

if (argc != 5) {
cout << "Usage: replace in out oldchar newchar\n";
return 1;

}

ifstream in(argv[1l]) ;
ofstream out (argv([2]) ;

// Make sure files opened successfully.
if(lin.is_open()) {
cout << "Cannot open input file.\n";
return 1;

}

if (tout.is open()) {
cout << "Cannot open output file.\n";
return 1;

}

// Create stream iterators.

Chapter 4: Algorithms, Function Objects, and Other STL Components

istreambuf iterator<char> in itr(in);
ostreambuf iterator<char> out_itr(out);

// Copy the file, replacing characters in the process.
replace copy(in itr, istreambuf iterator<chars(),
out_itr, *argv[3], *argv[4]);

// The destructors for both ofstream and ifstream call close(),
// so the following calls are not necessary in this case.

// However, to avoid confusion, this book explicitly closes

// all files.

in.close() ;

out.close() ;

return O;

To understand the effects of the program, assume a file called Test.dat that contains the
following;:

This is a test that uses the stream iterator with an algorithm.

Next, assuming that the program is called Replace, after this command line executes:

C:>Replace Test.dat Test2.dat t X

All occurrences of 't' will be replaced by 'X' when Test.dat is copied into Test2.dat. Therefore,
the contents of Test2.dat will be:

This is a XesX XhaX uses Xhe sXream iXeraXor wiXh an algoriXhm.

Notice that once the files are open, it takes only one statement, the call to replace_copy(),
to copy the file, replacing all occurrences of one character with another in the process. To do
this without the use of replace_copy() would require several lines of code. If you think
about it, it becomes clear that the STL algorithms offer an elegant solution to many types of
file-handling tasks. This is one of the more important, yet under-utilized capabilities of the
STL.

Options and Alternatives

The stream iterators are really a "one-of-a-kind" feature. There isn't a directly parallel
alternative. If you want to operate on streams through iterators, you will do so through the
stream iterators as just described. Of course, you could always create your own custom
implementations, but there would seldom (if ever) be a reason to do so. The stream iterators
offer a powerful alternative to the "normal" approach to I/O, such as the I/O operators and
manipulators.

For recipes that focus on the C++ I/O system, see Chapter 5.

213

214 Herb Schildt's C++ Programming Cookbook

rd

Use the Insert Iterator Adaptors

I Key Ingredients
Headers Classes Functions
<iterator> template <class Cont>

front_insert_iterator<Cont>
front_inserter(Cont &cnt)
template <class Cont>
back_insert_iterator<Cont>
back_inserter(Cont &cnt)
template <class Cont, class Outlter>
insert_iterator<Cont>
inserter(Cont &cnt, Outlter itr)

The STL defines three iterator adaptors that are used to obtain an iterator that inserts,
rather than overwrites, elements in a container. These adaptors are called back_inserter(),
front_inserter(), and inserter(). They are declared in <iterator>. This recipe shows how
to use them.

The insert iterator adaptors are quite useful tools. To understand why, consider the
following two behaviors associated with iterators. First, when using normal iterators to
copy an element into a container, the current contents of the target range are overwritten.
That is, the element being copied is not inserted into the container, but replaces (that is,
overwrites) the previous element. Thus, the previous contents of the target container are not
preserved. Second, when elements are copied into a container through a normal iterator, it
is possible to overrun the end of the container. Recall that a container will not automatically
increase its size when it is used as the target of an algorithm; it must be large enough to
accommodate the number of elements that it will receive before a copy operation takes
place. An insert iterator allows you to alter these two behaviors.

When an element is added to a container through an insert iterator, the element is inserted
at the location pointed to by the iterator, with any remaining elements moving over to make
room for the new element. Thus, the original contents of the container are preserved. If
necessary, the size of the container is increased to accommodate the inserted element. It is not
possible to overrun the end of the target container.

Step-by-Step
To adapt an iterator for insertion operations involves these steps:
1. To obtain an iterator that can insert at any point in a container, call inserter(), specifying
the container and an iterator to the point at which you want the insertion to occur.

2. To obtain an iterator that can insert at the end of a container, call back_inserter(),
specifying the container.

3. To obtain an iterator that can insert at the front of a container, call front_inserter(),
specifying the container.

Chapter 4: Algorithms, Function Objects, and Other STL Components 215

Discussion

To obtain an iterator that can insert elements at any point in a container, use the inserter()
function, shown here:

template <class Cont, class Outlter> insert_iterator<Cont>
inserter(Cont &cnt, Outlter itr)

Here, cnt is the container being operated upon and itr points to the location at which the
insertions will occur. It returns an iterator of type insert_iterator. The insert_iterator class
encapsulates an output iterator that inserts objects into a container.

To obtain an iterator that can insert elements onto the end of a container, call
back_inserter(). It is shown here:

template <class Cont> back_insert_iterator<Cont> back_inserter(Cont &cnt)

The container receiving the insertions is passed via cnt. It returns an iterator of type
back_insert_iterator. The back_insert_iterator class encapsulates an output iterator that
inserts objects onto the end of a container. The receiving container must support the
push_back() function.

To obtain an iterator that can insert elements onto the front of a container, call
front_inserter(). It is shown here:

template <class Cont> front_insert_iterator<Cont> front_inserter(Cont &cnt)

The container receiving the insertions is passed via cnt. It returns an iterator of type
front_insert_iterator. The front_insert_iterator class encapsulates an output iterator that
inserts objects onto the front of a container. The receiving container must support the
push_front() function. This means that a vector, for example, cannot be the target of

a front_insert_iterator.

Example

Each of the insert iterators insert into, rather than overwrite, the contents of a container. The
following example demonstrates each type of insert iterator by copying the contents of one
deque into another. Because insert iterators are used, the original deque is not overwritten.
Rather, the new elements are inserted into it.

// Use insert iterator adaptors to insert one deque
// into another by way of the copy() algorithm.

#include <iostreams>
#include <iterator>
#include <deque>
#include <string>
using namespace std;

void show(const char *msg, deque<strings> dq) ;

int main ()

{

216 Herb Schildt's C++ Programming Cookbook

deque<string> dqg, dg2, dg3, dg4;

dg.push_back ("Iterators") ;
dg.push_back ("are") ;
dg.push_back ("the") ;
dg.push_back ("the") ;
dg.push_back ("STL") ;
dg.push_back ("together.") ;

dg2.push back ("glue") ;
dg2.push back ("that") ;
dg2.push back ("holds") ;

dg3.push_back ("At") ;
dg3.push back("the") ;
dg3.push back("end.") ;

dg4 .push_back ("front.") ;
dg4 .push_back ("the") ;
dg4 .push back ("At") ;

cout << "Original size of dg: " << dg.size() << endl;
show ("Original contents of dg:\n", dq);
cout << endl;

// Use an insert iterator to insert dg2 into dg.
copy (dg2.begin(), dg2.end(), inserter(dq, dg.begin()+3));

cout << "Size of dgq after inserting dg2: ";

cout << dg.size() << endl;

show ("Contents of dg after inserting dg2:\n", dq);
cout << endl;

// Use a back_insert iterator to insert dg3 into dg.
copy (dg3.begin(), dg3.end(), back inserter(dq)) ;

cout << "Size of dgq after inserting dg3: ";

cout << dg.size() << endl;

show ("Contents of dg after inserting dg3:\n", d4dq);
cout << endl;

// Use a front insert iterator to insert dg4 into dq.
copy (dg4 .begin(), dg4.end(), front inserter(dq));

cout << "Size of dg after inserting dg4: ";
cout << dg.size() << endl;
show ("Contents of dg after inserting dg4:\n", d4q);

return O;

}

// Display the contents of a deque<strings.
void show (const char *msg, deque<strings> dg) {

Chapter 4: Algorithms, Function Objects, and Other STL Components

cout << msg;

for (unsigned i=0; i < dg.size(); ++1)
cout << dgli] << " ";

cout << "\n";

}
Here is the output from the program.

Original size of dg: 6
Original contents of dqg:
Iterators are the the STL together.

Size of dg after inserting dg2: 9
Contents of dg after inserting dg2:
Iterators are the glue that holds the STL together.

Size of dg after inserting dg3: 12
Contents of dg after inserting dg3:
Iterators are the glue that holds the STL together. At the end.

Size of dg after inserting dg4: 15

Contents of dg after inserting dg4:

At the front. Iterators are the glue that holds the STL together. At the
end.

As you can see, the dq2 was inserted into the middle, dq3 was inserted on the end, and dq4
was inserted at the front of dq. In the process, dq was automatically increased in size to
hold the additional elements. If an insert iterator had not been used, the original contents of
dq would have been overwritten.

Options and Alternatives

The insert iterator adaptors are often used when an algorithm copies the result of an
operation to another container. This situation occurs with algorithms such as replace_copy(),
reverse_copy(), remove_copy(), and so on. It also occurs with most of the set algorithms.
By using an insert iterator adaptor, you can enable those algorithms to insert the result into
the target container, rather than overwriting the existing elements. This capability greatly
expands the types of problems to which these algorithms can be applied.

21

This page intentionally left blank

CHAPTER
Working with 1/0

I I This chapter presents recipes that use the C++ 1/O system. As all readers know, I/O is
an integral part of nearly all programming projects. As a result, most computer
languages have significant subsystems devoted to it, and C++ is no exception. The

C++ I/0O library is rich in its capabilities, yet flexible and easy to use. It is also extensible.

Based on a sophisticated class hierarchy, the I/O system offers the programmer a well-

organized framework that can be applied to nearly any situation.

Because of the importance of I/0, it is a topic that generates many "How-To" questions,
both from newcomers and experienced pros. Of course, given the size and scope of the I/O
library, it is not possible to present recipes that cover all aspects and nuances of this powerful
subsystem. To do so would require a complete book of its own. Instead, this chapter answers
several of the most common questions. As you might expect, its main focus is on handling
files, including recipes that show how to read and write data, perform random access, and
detect errors. Other recipes describe how to create custom I/O manipulators, overload the
I/0 operators, and use a string-based stream.

As an added bonus, a recipe is included that describes the core of the I/O system
inherited from the C language. Because C++ was built on C, C++ also includes the entire C
file system. Although not recommended for C++ programs, the C file system is still in
widespread use in legacy C code. The C-based recipe will be of interest to anyone who
needs to maintain C code or port C code to C++.

One other point: Although formatting data for input and operations is also handled by
the I/O system, this topic is explored on its own in Chapter 6. The focus of this chapter is on
the foundation of C++1/0.

Here are the recipes contained in this chapter:

¢ Write Formatted Data to a Text File

¢ Read Formatted Data from a Text File

¢ Write Unformatted Binary Data to a File

¢ Read Unformatted Binary Data from a File

e Use get() and getline() to Read from a File

® Read from and Write to a File

¢ Detecting EOF

¢ Use Exceptions to Detect and Handle I/O Errors

219

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

280 Herb Schildt's C++ Programming Cookbook

e Use Random-Access File I/O

¢ Look Ahead in a File

e Use the String Streams

e (Create Custom Inserters and Extractors
¢ Create a Parameterless Manipulator

* Create a Parameterized Manipulator

e Obtain or Set a Stream's Locale

¢ Use the C-Based File System

e Rename and Remove a File

NOTE As explained in Use the Stream Iterators in Chapter 4, it is possible to use STL algorithms
in conjunction with stream iterators to perform a wide variety of I/O and file handling tasks. In
some cases, the use of stream iterators and algorithms simplifies some otherwise complicated
tasks. However, the focus of this chapter is the C++ I/O system. As such, the recipes do not use
the STL algorithms. Just remember that the stream iterators and STL algorithms offer an
interesting alternative that may be useful in some cases.

1/0 Overview

The C++1/0 system is based on a cohesive, interrelated collection of classes that provide
the functionality necessary to perform efficient input and output operations on a variety of
different devices, including the console and disk files. Although no part of the I/O system is
difficult to master, it is quite large, relying on several classes and many functions. Therefore,
a brief overview of the C++ I/O system is given here. This discussion is sufficient for the
purposes of the recipes in this chapter, but readers who will be doing advanced I/O
programming, such as deriving classes to handle specialized devices, will need to study the
I/0 system in significantly greater detail.

C++ Streams

At the foundation of the C++ I/O system is the stream. A stream is an abstraction that either
produces or consumes information. All streams behave in the same manner, even if the
actual physical devices to which they are linked differ. This means that the way that you
operate on one type of stream is the same for all streams. For example, the put() function
can be used to write to the screen, to a disk file, or to the printer.

In its most common form, a stream is a logical interface to a file. As C++ defines the
term file, it can refer to a disk file, the screen, the keyboard, a port, a file on tape, and so on.
Although files differ in form and capabilities, all streams are the same. The advantage to
this approach is that to you, the programmer, one hardware device will look much like any
other. The stream provides a consistent interface.

A stream is linked to a file through an open operation. A stream is disassociated from
a file through a close operation.

There are two types of streams: text and binary. A text stream is used for human-readable
information. In a text stream, some character translations may take place. For example, when
the newline character is output, it may be converted into a carriage-return/linefeed sequence.

Chapter 5: Working with 1/0

For this reason, there might not be a one-to-one correspondence between what is sent to the
stream and what is written to the file. A binary stream can be used with any type of data. No
character translations will occur, and there is a one-to-one correspondence between what is
sent to the stream and what is actually contained in the file.

One more concept to understand is that of the current location. The current location (also
referred to as the current position) is the location in a stream where the next I/O operation
will occur. For example, consider a situation in which a stream is linked to a file. If a file is
100 bytes long and half the file has been read, the next read operation will occur at byte 50,
which is the current location.

To summarize: In C++, I/O is performed through a logical interface called a stream. All
streams have similar properties, and every stream is operated upon by the same 1/0O
functions, no matter what type of file it is associated with. A file is the actual physical entity
that contains the data. Even though files differ, streams do not. (Of course, some devices
may not support all operations, such as random-access operations, so their associated
streams will not support these operations either.)

The C++ Stream Classes

The standard C++ I/O system is constructed from a rather complex system of template
classes. These classes are shown here.

Class Purpose

basic_ios Provides general-purpose 1/0 operations.

basic_streambuf Low-level support for 1/0.

basic_istream Support for input operations. Inherits basic_ios.

basic_ostream Support for output operations. Inherits basic_ios.
basic_iostream Support for input/output operations. Inherits basic_istream and

basic_ostream.

basic_filebuf Low-level support for file 1/0. Inherits basic_streambuf.
basic_ifstream Support for file input. Inherits basic_istream.

basic_ofstream Support for file output. Inherits basic_ostream.

basic_fstream Support for file input/output. Inherits basic_iostream.
basic_stringbuf Low-level support for string-based 1/0. Inherits basic_streambuf.

basic_istringstream Support for string-based input. Inherits basic_istream.

basic_ostringstream | Support for string-based output. Inherits basic_ostream.

basic_stringstream Support for string-based input/output. Inherits basic_iostream.

Also part of the I/O class hierarchy is the non-template class ios_base. It provides
definitions for various elements of the I/O system that are not dependent upon template
parameters.

281

282

Herb Schildt's C++ Programming Cookbook

The C++1/0 system utilizes two related but different template class hierarchies. The first is
derived from the low-level I/O class called basic_streambuf, which requires the <streambuf>
header. This class supplies the basic, low-level input and output operations of a stream buffer,
which provides the underlying support for the entire C++ I/O system. Each stream contains a
basic_streambuf object, although you don't typically need to access it directly. The classes
basic_filebuf and basic_stringbuf are derived from basic_streambuf. Unless you are doing
advanced I/O programming, you will not need to use basic_streambuf or its subclasses
directly. Rather, you will use its features through functions defined by the stream classes.

The class hierarchy that you will most commonly be working with is derived from
basic_ios. It is declared in the <ios> header. This is a high-level I/O class that defines features
common to all streams, such as error checking and status information. A base class for
basic_ios is ios_base. As explained, it defines several non-template traits used by basic_ios,
such as formatting The basic_ios class is used as a base for several derived classes, including
basic_istream, basic_ostream, and basic_iostream. These classes provide the core functionality
required by streams capable of input, output, and input/output, respectively.

The 1/0 classes are parameterized for the types of characters that they act upon and for
the traits associated with those characters. For example, here is the template specification
for basic_ios:

template <class CharType, class CharTraits = char_traits<CharType> >
class basic_ios: public ios_base

Here, CharType specifies the type of character (such as char or wchar_t) and CharTraits
specifies a type that describes the attributes of CharType. Notice that CharTraits defaults to
char_traits<CharType>. The generic type char_traits is a utility class that defines the
attributes associated with a character.

To perform file I/O, you must include the header <fstream> in your program. It defines
several classes, including basic_ifstream, basic_ofstream, and basic_fstream. These classes
are derived from basic_istream, basic_ostream, and basic_iostream, respectively. Remember,
basic_istream, basic_ostream, and basic_iostream are derived from basic_ios, so the file
streams also have access to all operations defined by basic_ios.

The I/O system also supports using a string as a source or destination for I/O
operations. To do so, you will use the string stream classes. Low-level support is provided
by basic_stringbuf, which is derived from basic_streambuf. The string stream classes are
basic_istringstream, basic_ostringstream, and basic_stringstream. These classes are
derived from basic_istream, basic_ostream, and basic_iostream, respectively. They create
string streams capable of input, output, and input/output.

As mentioned, each stream has an object derived from basic_streambuf associated with
it, but most of time you won't need to interact with the basic_streambuf object directly.
Instead, in most cases (including all of the recipes in this chapter), you will use the features
provided by the stream classes, which are derived from basic_ios. The following sections
give a brief overview of each. The individual recipes describe in depth the features that they
use. We will begin with ios_base.

ios_base

The ios_base class encapsulates those aspects of I/O that are common to all streams and
that do not depend on template parameters. It requires the <ios> header. The ios_base class
defines several types and functions. Here are the types used in this book:

Chapter 5: Working with 1/0

fmtflags A bitmask that determines the format of information that is output.
iostate A bitmask that indicates the status of a stream.

openmode The bitmask that indicates how a file is opened.

seekdir An enumeration that controls how random-access |1/0 is handled.

Here is a sampling of its methods:

flags() Gets or sets all of the format flags.
setf() Gets or sets specific format flags.
unsetf() Clears one or more format flags.
precision() Gets or sets the precision.
width() Gets or sets the field width.
imbue() Sets the locale.
getloc() Gets the locale.

basic_ios

The basic_ios class inherits ios_base and then defines those template-related features that
are common to all streams. It uses the <ios> header. It defines the following typedefs that
indicate type (and, therefore, the size) of several types used by the I/O system. They are

shown here:

char_type The character type.

int_type The integer type.

pos_type A type that can represent a position within a file.
off_type A type that can represent an offset within a file.
traits_type A type that describes the character traits.

The basic_ios class also defines several functions. The ones used in this chapter are

shown here:

clear()

Clears the 1/0 error flags.

exceptions()

Sets or obtains the errors that can cause an exception to be thrown.

eof() Returns true if the end of the file has been reached.
bad() Returns true if an unrecoverable error has occurred.
fail() Returns true if an error has occurred.
fill() Gets or sets the fill character used to pad a stream.
good() Returns true if no error has occurred.
rdstate() Obtains a bitmask that contains the 1/0 status flags.

setstate()

Sets one or more 1/0 flags.

283

284

Herb Schildt's C++ Programming Cookbook

Notice that many of these have to do with the flags that represent the state of an I/O stream.
These are used to detect and handle errors and the end-of-file condition. (Error handling
techniques are described later in this overview.)

The basic_ios class also defines the * and the ! operators that can be applied to a stream.
The * operator returns a null pointer if the stream is bad and non-null pointer otherwise.
The ! returns the result of fail(). Therefore, if no errors have occurred, ! returns false.
Otherwise, it returns true.

basic_istream
The basic_istream class inherits basic_ios and defines the functionality common to all input
streams. Thus, basic_istream is at the core of all input streams. It requires the <istream>
header.

The basic_istream class defines the >> extractor, which reads formatted data from the
input stream. This operator is overloaded for all of the built-in types. Several functions are
defined by basic_istream. The ones used in this chapter are shown here:

geount() Returns the number of characters read by the last input operation.
get() Reads and removes one or more characters from the input stream.
getline() Reads and removes a line of text from the input stream.

ignore() Reads and discards characters from the input stream.

peek() Reads, but does not remove, a character from the input stream.
putback() Returns a character to the input stream.

read() Reads and removes characters from the input stream.

seekg() Sets the file position for input.

tellg() Returns the current position in the input stream.

unget() Returns to the input stream the last character read from that stream.

basic_ostream
The basic_ostream class inherits basic_ios and defines the functionality common to all
output streams. Thus, basic_ostream is a base class for basic_ofstream, for example. It
requires the <ostream> header.

The basic_ostream class defines the << inserter, which writes formatted data to the
output stream. This operator is overloaded for all of the built-in types. Several functions are
defined by basic_ostream. The ones used in this chapter are shown here:

flush() Writes buffered data to the output stream.

put() Writes a character to the output stream.

seekp() Sets the current file position for output.

tellp() Returns the current position in the output stream.
write() Writes characters to the output stream.

Chapter 5: Working with 1/0

basic_iostream
The basic_iostream class inherits both basic_istream and basic_ostream. Therefore, it
encapsulates the features of a stream that is capable of both input and output.

basic_ifstream

The basic_ifstream class inherits basic_istream and adds the functionality required for file
input. It requires the <fstream> header. It defines four functions, of which the following
three are used by this chapter:

close() Closes a file, releasing any system resources used by that file.

is_open() Returns true if a file is open.

open() Opens a file for input. It is also possible to use a basic_ifstream
constructor to open a file.

basic_ofstream

The basic_ofstream class inherits basic_ostream and adds the functionality required for file
output. It requires the <fstream> header. It defines four functions, of which the following
three are used by this chapter:

close() Closes a file, releasing any system resources used by that file.

is_open() Returns true if a file is open.

open() Opens a file for output. It is also possible to use a basic_ofstream
constructor to open a file.

basic_fstream

The basic_fstream class inherits basic_iostream. Thus, it contains the functionality required
for file input and output. It requires the <fstream> header. It defines four functions, of which
the following three are used by this chapter:

close() Closes a file, releasing any system resources used by that file.

is_open() Returns true if a file is open.

open() Opens a file for input and output. It is also possible to use a basic_fstream
constructor to open a file.

The Stream Class Specializations

As explained, the C++ stream classes are templates that take the type of character and its
traits as type parameters. This means that the I/O system can operate on streams based on
8-bit characters and streams based on wide characters. As a convenience, the 1/0 library
creates two specializations of the template class hierarchies just described: one for char and
one for wchar_t. By using these specializations, you don't have to continually supply the
type parameters when declaring and using stream objects.

285

286

Herb Schildt's C++ Programming Cookbook

Here is a list of the mapping of template class names to their char and wchar_t versions:

Specialization

Specialization

Template Class for char for wchar_t
basic_ios ios wios
basic_istream istream wistream
basic_ostream ostream wostream
basic_iostream jostream wiostream
basic_fstream fstream wfstream
basic_ifstream ifstream wifstream
basic_ofstream ofstream wofstream

basic_istringstream

istringstream

wistringstream

basic_ostringstream

ostringstream

wostringstream

basic_stringstream

stringstream

wstringstream

basic_streambuf streambuf wstreambuf
basic_filebuf filebuf wfilebuf
basic_stringbuf stringbuf wstringbuf

Notice that the names used for char-based streams are simply the template class name with
the basic_ removed. For example, the char-based version of basic_ifstream is ifstream. The
char-based version of basic_ios is ios. The wide-character streams use the same approach,
but add the w.

The specializations are the names that are typically used when programming, because they
automatically create the desired stream type, rather than having to specify a type argument.
For example, you will normally use ifstream to open a file, not basic_ifstream<char>, and you
will normally specify ios, not basic_ios<char>. Not only is using the specialization shorter, it
also ensures that the proper stream objects are created in all cases, thus avoiding errors.

Of the two stream types, char-based streams are by far the most widely used. One
reason for this is that in C++, a char corresponds to a byte, and at the lowest level, all I/O
is byte-based. Therefore, unless you are explicitly operating on wide characters, the
char-based streams are the proper ones to use.

Because most streams are based on char, the char-based names will be used in the
examples and discussions throughout the remainder of this chapter and elsewhere in
this book.

Chapter 5: Working with 1/0 28]

REMEMBER In this chapter and throughout this book, the char-based stream names, such as ios
and ofstream, are used in the examples and discussions.

C++'s Predefined Streams

When a C++ program begins execution, four built-in streams are automatically opened.
They are:

Stream Meaning Default Device
cin Standard input Keyboard

cout Standard output Screen

cerr Standard error output Screen

clog Buffered version of cerr Screen

The streams cout, clog, and cerr are instances of ostream. The cin stream is an instance
of istream. Thus, all are char-based and use the header <iostream>.

By default, the standard streams are used to communicate with the console. However, in
environments that support I/O redirection, the standard streams can be redirected to other
devices or files. For the sake of simplicity, the examples in this chapter assume that no I/O
redirection has occurred.

Standard C++ also defines these four additional streams: win, wout, werr, and wlog.
These are wide-character versions of the standard streams, and are based on characters of
type wchar_t. Wide characters are used to hold the large character sets associated with some
human languages.

The Format Flags

Each stream has associated with it a set of format flags that control the way information is
formatted. These flags are contained in a bitmask enumeration called fmtflags that is
defined by ios_base. Because formatting is such a large topic, it is covered on its own in
Chapter 6. Therefore, a discussion of the format flags and recipes that use them is deferred
until then.

The 1/0 Manipulators

The C++1/0 system provides a number of manipulators, which are functions that can be
included in a formatted I/ O expression. They are used to set or clear the format flags
mentioned in the preceding section. They can also be used for other purposes, such as
outputting a null or skipping white space on input. Some manipulators, such as endl
(which inserts a newline into an output stream) are familiar to all C++ programmers. Others
are less well known. It is also possible to create your own manipulators.

The built-in manipulators are described in detail in Chapter 6, which presents recipes
related to formatting data. This chapter does, however, show how to create your own
manipulators. Custom manipulators can be used for whatever purpose you desire. One
common use is to provide a convenient means of controlling a non-standard device, such as
a plotter, that requires special format or positioning codes.

288 Herb Schildt's C++ Programming Cookbook

Checking for Errors

File I/O poses a special challenge when it comes to error handling because 1/0O failures are
a very real possibility when reading or writing files. Despite the fact that computer
hardware (and the Internet) is much more reliable than in the past, it still fails at a fairly
high rate, and any such failure must be handled in a manner consistent with the needs of
your application. In general, your code must monitor all file operations for errors and take
appropriate action if one occurs.

The C++1/0 system provides extensive abilities for detecting errors. As mentioned
earlier, ios_base defines a type called iostate that represents the various types of errors that
can occur, encoded into a bitmask. These error flags are defined by the following values:

badbit Set if a catastrophic error has occurred.
failbit Set if a possibly recoverable error has occurred.
eofbit Set if the end of the file has been reached. (This is not necessarily an

error condition.)

goodbit A value that indicates that none of the other bits are set.

Notice that eofbit is included in the list of flags. An end-of-file condition does not always
represent an error. Such a determination is context-based. (For example, if you are purposely
looking for the end of a file, it is not an "error" when you find it!) Recall that ios_base is
inherited by basic_ios, so these format flags are members of all stream classes. For char-based
streams, you will typically refer to these values through the ios specialization—for example,
ios::failbit.

In the basic_ios class are defined several functions that can obtain the state of the iostate
flags. They are shown here:

bool bad() const Returns true if badbit is set.

bool eof() const Returns true if eofbit is set.

bool fail() const Returns true if failbit is set.

bool good() const Returns true if no bits are set.

iostate rdstate() const Returns the current bitmask value associated with the stream.

You can use these functions to watch for errors. For example, one way to confirm that no
errors have occurred is to call good() on the stream, as shown here:

if (mystream.good()) cout << "No errors.\n";
Another way to check for errors is to use the rdstate() function, shown here:
iostate rdstate() const

It returns a value in which the status bits are encoded. For example, this sequence reports
the success or failure of an I/O operation:

Chapter 5: Working with 1/0 289

if (! (mystream.rdstate() & (ios::badbit | ios::failbit))) {
cout << "File successfully written.\n";
} else {

cout << "A file error occurred.";

}

Of course, it's usually easier to simply call good().
Once an error bit has been set, it stays set until it is cleared. To clear an error, call clear().
It is defined by ios and is shown here:

void clear(iostate flag = ios::goodbit)

It clears (i.e., resets) all flags. It then sets the flags to flag. You can set more than one flag by
OR-ing them together. By default, it sets no flags. Thus, by default, it simply clears all error
conditions.

You can also test the status of a stream by use of the ! operator. As explained earlier, the !
returns the outcome of fail(). Therefore, if a stream has experienced an error, then ! will
return true. For example:

if (Imystream())
// ... error occurred

}

Another way to handle errors is to use exception handling. This technique is described
in detail in the recipe Use Exceptions to Detect and Handle I/O Errors.

In the examples in this chapter, any I/O errors that do occur are handled by simply
displaying a message. While acceptable for the example programs, real applications will
usually need to provide a more sophisticated response to an I/O error. For example, you
might want to give the user the ability to retry the operation, specify an alternative operation,
or otherwise gracefully handle the problem. Preventing the loss or corruption of data is a
primary goal. Part of being a great programmer is knowing how to effectively manage the
things that might go wrong when an I/O operation fails.

One final point: A common mistake that occurs when handling files is forgetting to close
a file when you are done with it. Open files use system resources. Thus, there are limits to
the number of files that can be open at any one time. Closing a file also ensures that any
data written to the file is actually written to the physical device. Therefore, the rule is very
simple: If you open a file, close the file. Although files are closed automatically when a file
stream's destructor executes (such as at the end of an application), it's best not to rely on this
because it can lead to sloppy programming and bad habits. It is better to explicitly close
each file when it is no longer needed, properly handling any errors that might occur. For
this reason, all files are explicitly closed by the examples in this chapter, even when the
program is ending.

Opening and Closing a File
Before any I/O operations can take place on a file, the file must be opened. Although the
specifics will differ, based on the type of file being opened, the general procedure is the
same for all types of files. For this reason, it makes sense to describe the basic file-opening
techniques in one place, rather than in each recipe. For convenience, the following discussion

290

Herb Schildt's C++ Programming Cookbook

uses the names defined by the char specializations, but the same basic techniques would also
apply to wide-character files.

In C++, you open a file by linking it to a stream. Therefore, before you can open a file,
you must first obtain a stream instance. There are three types of streams: input, output, and
input/output. To create a file input stream, use ifstream. To create a file output stream, use
ofstream. File streams that will be performing both input and output operations are declared
as objects of the fstream class. For example, this fragment creates one input stream, one
output stream, and one stream capable of both input and output:

ifstream in; // input
ofstream out; // output
fstream io; // input and output

Once you have created a stream, you can associate it with a file by using open(). This
function is a member of each of the three stream classes. The prototype for each is shown
here:

void ifstream::open(const char *fname, ios::openmode mode = ios::in)
void ofstream::open(const char *fname, ios::openmode mode = ios::out)
void fstream::open(const char *fname, ios::openmode mode = ios::in | ios::out)

Here, fname is the name of the file; it can include a path specifier. The value of mode determines
how the file is opened. It must be one or more of the values defined by openmode, which is
an enumeration defined by ios (through its base class ios_base). Here are the values defined
by openmode:

app Output is appended to the end of the file.

ate An initial seek is made to the end of the file.

binary The file is opened in binary mode rather than text mode. (Text mode is
the default.)

in The file is opened for input. (Cannot be used with ofstream.)

out The file is opened for output. (Cannot be used with ifstream.)

trunc The file is truncated.

More than one mode value can be included by OR-ing them together using the | operator.
Following is a detailed description of their effect.

The in value specifies that the file is capable of input. The out value specifies that the
file is capable of output. In all cases, at least one of these values must be used when
opening a file.

Including app causes all output to a file to be appended to the end. This value can be
used only with files capable of output. Including ate causes a seek to the end of the file to
occur when the file is opened. Although ate causes an initial seek to end-of-file, I/O
operations can still occur anywhere within the file.

The binary value causes a file to be opened in binary mode. By default, all files are
opened in text mode. In text mode, various character translations may take place, such as

Chapter 5: Working with 1/0

carriage return, linefeed sequences being converted into newlines. However, when a file is
opened in binary mode, no such character translations will occur. Understand that any file,
whether it contains formatted text or raw data, can be opened in either binary or text mode.
The only difference is whether character translations take place.

The trunc value causes the contents of a preexisting file by the same name to be
destroyed, and the file is truncated to zero length.

Because ios inherits ios_base, you will often see these mode values qualified with ios::
rather than ios_base::. For example, you will often see ios::out rather than ios_base::out.
This book uses the ios:: form because it is shorter. (Actually, you could also use such
constructs as ofstream::out or ifstream::in, but traditionally, ios:: has been used.)

Putting together the pieces, the following fragment creates an output stream called fout
and uses open() to link it to a file called test.dat. Although it uses ofstream (which creates
an output file stream), the general approach applies to all file streams.

// Create an ofstream object.
ofstream fout;

// Open a file on fout.
fout.open("test.dat") ;

This sequence first creates an ofstream object called fout, which is not yet linked to a file.
Therefore, although fout is an instance of ofstream, it cannot be used to write output
because it is not yet associated with a specific file. The call to open() links fout with the file
called test.dat and opens the file for output operations. After open() returns, it is possible to
write to the file via fout. Because the mode parameter of open() automatically defaults to
ios::out, there is no need to specify it explicitly in this case.

While there is nothing whatsoever wrong with the preceding "two-step" approach, all of
the file stream classes (fstream, ofstream, and ifstream) let you open a file at the same time
that the stream object is being created by passing the name of the file to the constructor.
Here are the file stream constructors that let you specify a file:

ofstream(const char *fname, ios::openmode mode = ios::out)
ifstream(const char *fname, ios::openmode mode = ios::in)
fstream(const char *fname, ios::openmode mode = ios:in | ios::out)

As you can see, the mode parameter defaults to a value appropriate for the stream. For
example, here is a much more compact way to create fout and link it to test.dat:

ofstream fout ("test.dat");

When this statement executes, it constructs an ofstream object that is linked to a file called
test.dat, and it then opens that file for output. As before, although ofstream is used by this
example, the same general approach applies to all file streams.

It is important to understand that both open() and the file stream constructors attempt
to open a file. However, this attempt can fail for a variety of reasons, such as when the caller
does not have the proper security permissions to open the file, or if the open-file limit
supported by the environment has been reached. Therefore, before using a file, you must

291

292

Herb Schildt's C++ Programming Cookbook

confirm that it has been successfully opened. There are several ways to do this. One way is
to call is_open() on the file stream instance. It is shown here:

bool is_open()

It returns true if the file is open and false otherwise. For example, the following sequence
verifies that fout is actually open:

ofstream fout ("test.dat");
// Verify that the file has been successfully opened.
if (!fout.is open()) {

cout << "fout could not be opened.\n";

// handle the error

}

This works because if the attempt to open the file fails, then is_open() will return false, because
fout is not open. It is important to understand that you can use is_open() any time you need to
know if a file is open. Its use is not limited to verifying that the open operation succeeded.

Although using is_open() is valid, and is used occasionally in this book for the sake of
illustration, there are other ways to verify that the file has been successfully opened. These
other ways are based on the fact that failure-to-open creates an error condition in the stream.
Specifically, if a file cannot be opened (either through an explicit call to open() or by the file
stream constructor), then the failure flag failbit will be set on the stream to indicate an I/O
failure. Therefore, if the file cannot be opened, a call to fail() on that stream will return true.
This means that you can detect a failure by calling fail() on the stream. Therefore, here is
another way to detect a failure to open:

ofstream fout ("test.dat");

if (Fout.fail()) {
cout << "fout could not be opened.\n";
// handle the error

}

In this case, if the attempt to open the file fails, fail() will return true. However, there is a
simpler way.

As explained earlier, when the ! operator is applied to a file stream, it returns the result
of fail() called on the same stream. Therefore, to test for a failure to open, you can use this
sequence:

ofstream fout ("test.dat") ;

if (1fout)
cout << "fout could not be opened.\n";
// handle the error

}

This is the form that you will usually see used in professionally written code.

When you are done with a file, you must ensure that it is closed. In general, a file is
automatically closed by the file stream's destructor when the file stream instance goes out of
scope, such as when the program ends. You can also explicitly close a file by calling close(),
which is supported by all file stream classes. It is shown here:

void close()

Chapter 5: Working with 1/0 293

Closing a file causes the contents of any buffers to be flushed and the system resources
linked to the file to be released.

Although files are closed automatically when the file stream is destroyed, many
programmers believe that it is better practice to explicitly close a file when it is no longer
needed. One reason for this is that open files consume system resources. Closing the file
releases those resources. Therefore, all examples in this chapter explicitly close all files, even
at the end of a program, simply to explicitly illustrate the use of close() and to emphasize
that files must be closed.

”~
Write Formatted Data to a Text File

I Key Ingredients
Headers Classes Functions and Operators
<fstream> ofstream void close()

bool good() const

void open(const char *fname,
ios::openmode mode = ios::out)

<ostream> <<

C++ gives you two ways to write data to a file. First, you can write unformatted data in its
raw, binary form. Second, you can write formatted data. This is data in its textual, human-
readable form. In this approach, the format of the data written to the file will be the same as
you would see on the screen. A file that contains formatted data is commonly referred to as
a text file. The writing of formatted data to a text file is the subject of this recipe.

Step-by-Step

To write formatted data to a file involves these steps:

1. Create an instance of ofstream.

2. Open the file by calling open() on the ofstream instance created in Step 1.
Alternatively, you can open the file at the same time you create the ofstream object.
(See the Discussion section for this recipe.)

. Confirm that the file has been successfully opened.
. Write data to the file by using the << insertion operator.

. Close the file by calling close().

N U1 B~ W

. Confirm that the write operations have been successful. This can be done by calling
good() on the output stream.

294

Herb Schildt's C++ Programming Cookbook

Discussion
A general overview of opening and closing a file is found in Opening and Closing a File near
the start of this chapter. The specifics relating to ofstream are presented here.

To create an output stream linked to a file, create an object of type ofstream. It has these
two constructors:

ofstream()
explicit ofstream(const char *fname, ios::openmode mode = ios::out)

The first creates an ofstream instance that is not yet linked to a file. The second creates an
ofstream instance and then opens the file specified by fname with the mode specified by
mode. Notice that mode defaults to ios::out. This causes the file to be created, and any
preexisting file with the same name is destroyed. Also, the file is automatically opened for
text output. (By default, all files are opened in text mode. For binary output, you must
explicitly request binary mode.) The ofstream class requires the <fstream> header.

If you use the default constructor, then you will need to link a file to the ofstream
instance after it is constructed. To do this, call open(). The version defined by ofstream is
shown here:

void open(const char *fname, ios::openmode mode = ios::out)

It opens the file specified by fname with the mode specified by mode. Notice that, like the
ofstream constructor, mode defaults to ios::out.

Before attempting to write to the file, you must confirm that the file has been opened.
You can do this in various ways. The approach used by this recipe is to apply the ! operator
to the ofstream instance. Recall that the ! operator returns the outcome of a call to fail() on
the stream. Therefore, if it returns true, the open operation has failed.

Once an output file has been successfully opened, you can write formatted output to it
through the << inserter operator. It is defined for all objects of type ostream, which includes
ofstream because it inherits ostream. It uses the header <ostream>, which is typically
included when you include <fstream>, so you don't need to include it explicitly. The <<
operator is used to write formatted output to a file in the same way that it is used to write
output to the console via cout. For example, assuming that fout represents an open output
file, the following writes an integer, a string, and a floating-point to it:

fout << 10 << " This is a test " << 1.109;

Because the file has been open for text-based output, this information is written in its
human-readable form. Therefore, the file will contain the following;:

10 This is a test 1.109

When you are done writing to a file, you must close it. This is done by calling close(),
shown here:

void close()

The file is automatically closed when the ofstream destructor is called. However, for the
reasons stated in Opening and Closing a File, this book will explicitly call close() in all cases.

Chapter 5: Working with 1/0 295

This recipe verifies that no I/O errors have occurred by calling good() on the stream. It
is shown here:

bool good() const

It returns true if no error flags are set.

Example

The following example writes formatted data to a text file called test.dat. Notice that the
mode parameter of the ofstream constructor is not specified. This means that it defaults to
ios::out. For the sake of illustration, the program uses the good() function to report the
success or failure of the file operations. As explained, other approaches are possible.

// Write formatted output to a text file.

#include <iostream>
#include <fstream>

using namespace std;

int main ()

{
// Create an ofstream object and attempt to
// open the file test.dat.
ofstream fout ("test.dat") ;

// Verify that the file has been successfully opened.
if (1fout)
cout << "Cannot open file.\n";

return 1;
// Write output to the file.
fout << 10 << " " << -20 << " " << 30.2 << "\n";

fout << "This is a test.";

// Explicitly close the file.
fout.close() ;

if (! fout.good()) {
cout << "A file error occurred.";
return 1;

}
}

The contents of test.dat are shown here:

10 -20 30.2
This is a test.

As you can see, the data is stored in its human-readable, text format.

296 Herb Schildt's C++ Programming Cookbook

Options and Alternatives

When using ofstream, the mode parameter of open() or the ofstream constructor must
include ios::out (as it does by default), but you can also include other values. One of the
most helpful is ios::app because it causes all output to take place at the end of the file. This
means that the contents of a preexisting file by the same name are not lost. Instead, output is
added to the end of the previous contents. For example, if you use this call to ofstream() to
open test.dat in the example program:

ofstream fout ("test.dat", ios::out | ios::app);

then the output will be written to the end of the file. Therefore, each time you run the
program, the file will get larger.

To cause an initial seek to the end of the file, include ios::ate. After the initial seek to the
end, output can occur anywhere.

Although using good() is a convenient way to confirm the success of a formatted
output operation, it is not the only way. For example, you can use the bad() or fail()
functions. You can also use rdstate(). See Checking for Errors in the overview for details.

Another way to watch for possible I/O errors is through the use of exceptions. To do
this, you must specify the errors that will throw exceptions by calling exceptions() on the
ofstream object. Then, you must catch exceptions of type ios_base::failure. (See Use
Exceptions to Detect and Handle I/O Errors for details.)

If you want to write binary data, open the output stream in binary mode. (See Write
Unformatted Binary Data to a File for details.) To read formatted data from a file, use ifstream.
(See Read Formatted Data from a Text File.) To open a file for both input and output, create an
fstream object. (See Read from and Write to a File.)

”~

Read Formatted Data from a Text File

I Key Ingredients
Headers Classes Functions and Operators
<fstream> ifstream void close()

bool good() const

void open(const char *fname,
ios::openmode mode = ios::in)

<istream> >>

You can read formatted data from a text file by using the formatted input capabilities of the
C++1/0 system. Here, formatted data means the human-readable, text-based form of the data
rather than its raw binary representation. For example, given a file that contains the following;:

10 Hello 123.23

Chapter 5: Working with 1/0

you can use the formatted input features of C++ to read the integer 10, the string Hello, and
the floating-point value 123.23, storing the result in an int, string, and double value,
respectively. In general, you can read strings, integers, booleans, and floating-point values
that are stored in their human-readable form. This recipe shows the process.

Step-by-Step

To read formatted data from a file involves these steps:

1. Create an instance of ifstream.

2. Open the file by calling open() on the ifstream instance created in Step 1. Alternatively,
you can open the file at the same time you create the ifstream object. (See the
Discussion section for this recipe.)

. Confirm that the file has been successfully opened.
. Read data from the file by using the >> extraction operator.

. Close the file by calling close().

N U1 &~ W

. Confirm that the read operations have been successful. This can be done by calling
good() on the input stream.

Discussion

A general overview of opening and closing a file is found in Opening and Closing a File near
the start of this chapter. The specifics relating to ifstream are presented here.

To create an input stream linked to a file, create an object of type ifstream. It has these
two constructors:

ifstream()
explicit ifstream(const char *fname, ios::openmode mode = ios::in)

The first creates an ifstream instance that is not yet linked to a file. The second creates an
ifstream instance and then opens the file specified by fname with the mode specified by
mode. Notice that mode defaults to ios::in. This causes the file to be automatically opened for
text input. (By default, all files are opened in text mode. For binary input, you must explicitly
request binary mode.) The file specified by fruame must exist. If it doesn't, an error will result.
The ifstream class requires the <fstream> header.

If you use the default constructor, then you will need to link a file to the ifstream
instance after it is constructed. To do this, call open(). The version defined by ifstream is
shown here:

void open(const char *fname, ios::openmode mode = i0s::in)

It opens the file specified by fname with the mode specified by mode. Notice that, like the
ifstream constructor, mode defaults to ios::in.

Before attempting to read from the file, you must confirm that the file has been opened.
You can do this in various ways. The approach used by this recipe is to apply the ! operator
to the ifstream instance. Recall that the ! operator returns the outcome of a call to fail() on
the stream. Therefore, if it returns true, the open operation has failed.

291

298

Herb Schildt's C++ Programming Cookbook

Once an input file has been successfully opened, you can read formatted data from it by
using the >> extractor operator. It is defined for all objects of type istream, which includes
ifstream because it inherits istream. It uses the header <istream>, which is typically included
when you include <fstream>, so you don't need to include it explicitly. The >> operator is
used to read formatted input from a file in the same way that it is used to read input from
the console via cin. For example, assuming that fin represents a valid open input file, the
following reads an int, a string, and a double from it:

int x;

string str;
double wval;

fin >> x;
fin >> str;
fin >> val;

Assuming that the file referred to by fin contains the following;:
10 Hello 123.23

then, after reading the data, x will have the value 10, str will contain the string Hello, and
val will have the value 123.23.

When you are done reading from a file, you must close it. This is done by calling close(),
shown here:

void close()

The file is automatically closed when the ifstream destructor is called. However, for the
reasons stated in Opening and Closing a File, this book will explicitly call close() in all cases.

This recipe verifies that no I/O errors have occurred by calling good() on the stream. It
is shown here:

bool good() const

It returns true if no error flags are set.

Example

The following example shows how to read formatted input from a text file. It reads the file
produced by the example program in Write Formatted Data to a Text File.

// Read formatted data from a file.

//

// Note: This program reads the test.dat file
// produced by the example program shown in

//

// Write Formatted Data to a Text File
//

// The test.dat file created by that program
// contains the following data:

//

// 10 -20 30.2

// This is a test.

#include <iostream>
#include <fstream>
#include <string>

using namespace std;
int main()
int i, n;

double d;
string str;

Chapter 5: Working with 1/0

// Create an ifstream object and attempt to open the file test.dat.
ifstream fin("test.dat") ;

// Verify that the file has been successfully opened.

if (1fin)

cout << "Cannot open file.\n";

return 1;

}

// Read the formatted data.

fin >> 1i;
fin >> n;
fin >> d;
fin >> str;

// Close the input file.

fin.close() ;

// Confirm that no input errors occurred.

cout << "A file error occurred.";

if (1fin.good())
return 1;
1
// Display the data.
cout << 1 << " " <<
d << " " <<
return 0;

}

The output is shown here:

10 -20 30.2 This

n << " " <<
str << "\n";

Notice that only the word "This" rather than the entire sentence "This is a test." is displayed.
This is because the >> operator uses whitespace as a field separator. Thus, the line

fin >> str;

stops reading characters when the first space is encountered, which is the space that follows
"This" in the sentence. Additional input operations are required to read the rest of the sentence.

299

300 Herb Schildt's C++ Programming Cookbook

Options and Alternatives

As was pointed out, when reading a string, the >> operator reads characters until a whitespace
character is encountered. If you want to read an entire line of text, then you will want to use
one of the unformatted input functions, such as getline(). See Use get() and getline() to Read
from a File.

In some input situations, you will want to read data until you reach the end of the file.
You can determine when the end of a file has been encountered by calling eof() on the
stream. See Detecting EOF.

Although using good() is a convenient way to confirm the success of a formatted input
operation, it is not the only way. For example, you can use the bad() or fail() functions.
You can also use rdstate() or use the ! operator on the stream. See Checking for Errors in the
overview for details. You can also watch for possible I/O errors through the use of exceptions.
To do this, you must specify the errors that will throw exceptions by calling exceptions()
on the ifstream object. Then, you must catch exceptions of type ios_base::failure. (See Use
Exceptions to Detect and Handle 1/O Errors for details.)

When reading a string via the >> extraction operator, you should avoid using a character
array to receive the input. Use a string instead. If you use a character array, then it is possible
that the end of the array could be overrun by an unexpectedly long input sequence. This is
one source of the infamous "buffer-overrun" security flaw. Since string is a dynamic data
structure, it can better deal with unexpectedly long input. In some cases, it might be even
better to completely avoid using >> to read strings, relying on the unformatted input functions
instead. See Read Unformatted Binary Data from a File.

If you want to read binary data, open the input stream in binary mode. (See Read
Unformatted Binary Data from a File for details.) To write formatted data to a file, use ofstream.
(See Write Formatted Data to a Text File.) To open a file for both input and output, create an
fstream object. (See Read from and Write to a File.)

Write Unformatted Binary Data to a File

I Key Ingredients
Headers Classes Functions
<fstream> ofstream void close()

bool good() const
void open(const char *fname,
ios::openmode mode = ios::out)
ostream &write(const char *str,
streamsize num)

The recipe Write Formatted Data to a Text File described how to write formatted (i.e., text-
based) data to a text file. Although this type of output is useful in many situations, often,

Chapter 5: Working with 1/0

you will want to write unformatted data. Here, "unformatted” means output that is written
on a byte-by-byte basis in its raw binary form, without being translated or formatted into a
human-readable representation. Unformatted output is typically used to create data files, in
which the data is stored in its binary form. Of course, you can also use unformatted output
to create a text file by writing values of type char. Whatever the purpose, this recipe shows
the basic procedure used to write unformatted output to a file.

Step-by-Step

One way to write unformatted output to a file involves these steps:

1. Create an instance of ofstream.

2. Open the file by calling open() on the ofstream instance created in Step 1.
Alternatively, you can open the file at the same time you create the ofstream object.
(See the Discussion section for this recipe.)

. Confirm that the file has been successfully opened.
. One way to write unformatted data to the file is to call write().

. Close the file by calling close().

N U1 &~ W

. Confirm that the write operations have been successful. This can be done by calling
good() on the input stream.

Discussion

A general overview of opening and closing a file is found in Opening and Closing a File near
the start of this chapter. The specifics relating to using ofstream to write unformatted,
binary data are presented here.

To perform unformatted binary output, you must have an object of type ofstream that
supports binary operations. The ofstream class uses the header <fstream> and it defines
these two constructors:

ofstream()
explicit ofstream(const char *fname, ios::openmode mode = ios::out)

The first creates an ofstream instance that is not yet linked to a file. The second creates an
ofstream instance and then opens the file specified by fname with the mode specified by
mode. Notice that mode defaults to ios::out, but does not include the ios::binary flag. By
default, a file is opened in text mode. To open a file for unformatted output, the mode
argument must specify both ios::out and ios::binary. For example, the following opens a file
called test.dat for binary output:

ofstream fout ("test.dat", ios::out | ios::binary);

This causes any preexisting file with the name test.dat to be destroyed and a new file to
be created.

When the binary mode flag is specified, data is written in its raw, binary form, thus
preventing possible character translations (such as a newline being converted into a carriage-
return/linefeed sequence) that might occur when the file is opened in text mode. (Remember,
if ios::binary is not specified, the file is automatically opened in text mode.) Failure to use

301

302

Herb Schildt's C++ Programming Cookbook

binary mode can result in the bit pattern contained in the file being different from the bit
pattern of the original block of memory that was written. Therefore, you must always specify
ios::binary when opening a file for binary output.

If you use the default constructor, then you will need to link a file to the ofstream instance
after it is constructed by calling open(). The version defined by ofstream is shown here:

void open(const char *fname, ios::openmode mode = ios::out)

It opens the file specified by fname with the mode specified by mode. Notice that, like the
ofstream constructor, mode defaults to ios::out. Therefore, you must explicitly specify
ios::out and ios::binary to write unformatted binary data.

Before attempting to write to the file, you must confirm that the file has been opened.
You can do this in various ways. The approach used by this recipe is to apply the ! operator
to the ofstream instance. Recall that the ! operator returns the outcome of a call to fail() on
the stream. Therefore, if it returns true, the open operation has failed.

One way to write unformatted output to a file is to use the write() function. It writes
a block of data to a stream. It is shown here:

ostream &write(const char *buf, streamsize num)

Here, buf is a pointer to the block of memory to write and num specifies the number of bytes
to write. The streamsize type is defined as some form of integer that is capable of holding
the largest number of bytes that can be transferred in any one I/O operation. The function
returns a reference to the stream. Although buf is specified as char *, you can use write() to
write any type of binary data. Simply cast a pointer to that data to char * and specify the
length of the block in bytes. (Recall that in C++, a char is always exactly one byte long.) For
example, this sequence writes the double value in val to fout:

double val = 10.34;
fout.write((char *) &val, sizeof (double) ;

Understand that the data is written in its internal, floating-point format. Therefore, the file
contains the bit-pattern image of val, not its human-readable form.

When you are done writing to a file, you must close it. This is done by calling close(),
shown here:

void close()

The file is automatically closed when the ofstream destructor is called. However, for the
reasons stated in Opening and Closing a File, this book will explicitly call close() in all cases.

This recipe verifies that no I/O errors have occurred by calling good() on the stream.
It is shown here:

bool good() const

It returns true if no error flags are set.

Example

The following example demonstrates the writing of binary data to a file. It creates a structure
called inventory that stores the name, quantity, and cost of an item in inventory. Next, it
creates a three-element array of inventory structures called inv and stores inventory

Chapter 5: Working with 1/0

information in that array. It then writes that array to a file called InvDat.dat. After the
program ends, this file will contain a bit-by-bit copy of the information contained in inv.

// Use write() to output a block of binary data.

#include <iostream>
#include <fstream>
#include <cstring>

using namespace std;

// A simple inventory structure.
struct inventory

char item[20];

int quantity;

double cost;

Vi

int main ()

{
// Create and open a file for binary output.
ofstream fout ("InvDat.dat", ios::out | ios::binary);

// Confirm that the file opened without error.
if (1fout) {

cout << "Cannot open file.\n";

return 1;

}

// Create some inventory data.
inventory invI[3];

strcpy (inv[0] .item, "Hammers") ;
inv[0] .quantity = 3;
inv[0] .cost = 9.99;

strcepy (inv[1l] .item, "Pliers");
inv[1l] .quantity = 12;
inv[1l] .cost = 7.85;

strcpy (inv[2] .item, "Wrenches");
inv[2] .quantity = 19;
inv[2] .cost = 2.75;

// Write inventory data to the file.
for(int i=0; 1<3; i++)

fout.write((const char *) &inv[i], sizeof (inventory)) ;

// Close the file.
fout.close() ;

// Confirm that there were no file errors.

303

304 Herb Schildt's C++ Programming Cookbook

if (1fout.good()) {
cout << "A file error occurred.";
return 1;

}

return O;

}

Options and Alternatives
Another way to write unformatted data to a stream is called put(). It is shown here:

ostream &put(char ch)

This function writes the byte value passed in ch to the associated stream. (Remember in
C++, a char is one byte long. Thus, each call to put() writes one byte of data.) The function
returns a reference to the stream. Here is an example of how it can be used. Assuming that
fout is an open output stream, the following writes the characters in the string pointed

to by str:

const char *str = "Hello";
while (*str) fout.put (*str++);

After this sequence executes, the file will contain the characters "Hello".

Both put() and write() can be used on a text-based output stream (that is, a stream
not specified as binary). However, if you do so, then some character translations may
occur. For example, a newline will be converted into a carriage-return, linefeed sequence.
In general, if you are using either put() or write(), you will normally open the file for
binary operations.

By default, when a file is opened for output, the contents of any preexisting file by the
same name are destroyed. You can prevent this by including the flag ios::app in the mode
parameter of open() or the ofstream constructor. It causes all output to occur at the end of
the file, thus preserving its contents. To cause an initial seek to the end of the file, include
ios::ate. After the initial seek to the end, output can occur anywhere.

Although using good() is a convenient way to confirm the success of an unformatted
output operation, it is not the only way. For example, you can use the bad() or fail()
functions. You can also use rdstate(). See Checking for Errors in the overview for details. You
can also watch for possible I/O errors through the use of exceptions. To do this, you must
specify the errors that will throw exceptions by calling exceptions() on the ofstream object.
Then, you must catch exceptions of type ios_base:failure. (See Use Exceptions to Detect and
Handle I/O Errors for details.)

Another way to watch for errors when using write() or put() is to check the status of
the stream. Because both write() and put() return a reference to the stream upon which
they are operating, you can apply the ! operator to the returned object. Recall that when ! is
applied to a stream, it returns the result of fail() applied to the same stream. Therefore, you
can test for a successful call to write() like this:

if (lwrite(...)) { // ... handle the write error

Chapter 5: Working with 1/0 305

For example, in the preceding program, you could use the following sequence to write the
inventory records, confirming the success of each output operation in the process:

if (!fout.write((const char *) &inv[i], sizeof (inventory))) {
cout << "Error writing file.";
// handle the error ...

}

Taking this approach to checking for errors streamlines your source code. However, because
each call to write() also results in an if statement being evaluated (which takes time), it does
not streamline your program's performance. As a general rule, exceptions offer a better
alternative in this type of situation.

To read unformatted, binary information from a file, see Read Unformatted Binary Data
from a File. To read formatted data from a file, use ifstream. (See Read Formatted Data from
a Text File.)

ra

" Read Unformatted Binary Data from a File

I Key Ingredients
Headers Classes Functions
<fstream> ifstream void close()

bool good() const

void open(const char *fname,
ios::openmode mode = i0s::in)

ostream &read(char *str, streamsize num)

The recipe Read Formatted Data from a Text File described how to read formatted (i.e., text-
based) data from a text file. Although formatted input is useful in many contexts, often, you
will want to read unformatted data in its raw binary format, without any character
translations (which are possible with formatted input). For example, if you were creating a
file-comparison utility, you would want to operate on the binary data within the files on a
byte-by-byte basis. Whatever the need, this recipe shows the basic procedure used to read
unformatted input from a file.

Step-by-Step
One way to read unformatted, binary input from a file involves these steps:
1. Create an instance of ifstream.

2. Open the file by calling open() on the ifstream instance created in Step 1.
Alternatively, you can open the file at the same time you create the ifstream object.
(See the Discussion section for this recipe.)

306 Herb Schildt's C++ Programming Cookbook

3. Confirm that the file has been successfully opened.
4. One way to read unformatted data from the file is to call read().
5. Close the file by calling close().

6. Confirm that the read operations have been successful. This can be done by calling
good() on the input stream.

Discussion
A general overview of opening and closing a file is found in Opening and Closing a File near
the start of this chapter. The specifics relating to using ifstream to read unformatted, binary
data are presented here.

To perform unformatted binary input, you must have an object of type ifstream that
supports binary operations. The ifstream class uses the header <fstream> and it defines
these two constructors:

ifstream()
explicit ifstream(const char *fname, ios::openmode mode = i0s::in)

The first creates an ifstream instance that is not yet linked to a file. The second creates an
ifstream instance and then opens the file specified by fname with the mode specified by
mode. Notice that mode defaults to ios::in, but does not include the ios::binary flag. By
default, files are opened in text mode. To open a file for binary input, the mode argument
must specify both ios::in and ios::binary. For example, the following opens a file called
test.dat for binary input:

ifstream fout("test.dat", ios::in | ios::binary);

When the binary mode flag is specified, data is read on a byte-by-byte basis in its raw,
binary form. This prevents the possible character translations (such as a newline being
converted into a carriage-return/linefeed sequence) that might occur when the file is
opened in text mode. (If ios::binary is not specified, the file is automatically opened in text
mode.) Failure to use binary mode can result in information that is read being different from
that which is in the file. Therefore, you must always specify ios::binary when opening a file
for binary output.

If you use the default constructor, then you will need to link a file to the ifstream
instance after it is constructed. To do this, call open(). The version defined by ifstream is
shown here:

void open(const char *fname, ios::openmode mode = ios:in)

It opens the file specified by fname with the mode specified by mode. Notice that, like the
ifstream constructor, mode defaults to ios::in. Therefore, you must explicitly specify
ios::in and ios::binary to read unformatted binary data.

Before attempting to read from the file, you must confirm that the file has been opened.
You can do this in various ways. The approach used by this recipe is to apply the ! operator
to the ifstream instance. Recall that the ! operator returns the outcome of a call to fail() on
the stream. Therefore, if it returns true, the open operation has failed.

Chapter 5: Working with 1/0 307

One way to read unformatted output to a file is to use the read() function. It reads a
block of data from a stream. It is shown here:

istream &read(char *buf, streamsize num)

Here, buf is a pointer to the block of memory (such as an array) into which the input will be
stored. The number of bytes to read is specified by num. The streamsize type is defined as
some form of integer that is capable of holding the largest number of bytes that can be
transferred in any one I/O operation. The function returns a reference to the stream. If less
than the specified number of bytes are available (which will happen if you attempt to read
at the end of the file), read() will read less than num bytes and failbit will be set in the
invoking stream (which indicates an error). Although buf is specified as char *, you can use
read() to read any type of binary data. Simply cast a pointer to that data to char * and
specify the length of the block in bytes. (Recall that in C++, a char is always exactly one byte
long.) The example program shows the process.

When you are done reading from a file, you must close it. This is done by calling close(),
shown here:

void close()

The file is automatically closed when the ifstream destructor is called. However, for the
sake of illustration, this book will explicitly call close() in all cases.

This recipe verifies that no I/O errors have occurred by calling good() on the stream.
It is shown here:

bool good() const

It returns true if no error flags are set.

Example

The following example illustrates how to read unformatted binary data. It does so by
reading the InvDat.dat file created by the example program in Write Unformatted Binary
Data to a File. This file contains three inventory structures. After the call to read(), the inv
array will contain the same bit pattern as that stored in the file.

// Use read() to input blocks of binary data.
!/

// This program reads the InvDat.dat file
// that was created by the example program
// from

!/

// Write Unformatted Binary Data to a File

#include <iostream>
#include <fstream>

using namespace std;

// A simple inventory structure.
struct inventory ({

308

Herb Schildt's C++ Programming Cookbook

} .

char item[20];
int quantity;
double cost;

7

int main ()

{

}

// Open the file for binary input.
ifstream fin("InvDat.dat", ios::in | ios::binary);

// Confirm that the file opened without error.
if (1fin) {

cout << "Cannot open file.\n";

return 1;

}

inventory inv[3];
// Read blocks of binary data.
for(int 1=0; 1i<3; 1++)

fin.read((char *) &inv[i], sizeof (inventory)) ;

// Close the file.
fin.close() ;

// Confirm that there were no file errors.

if (1fin.good()) {
cout << "A file error occurred.\n";
return 1;

}

// Display the inventory data read from the file.
for(int i=0; i < 3; i++) {
cout << inv[i].item << "\n";

cout << " Quantity on hand: " << inv[i].quantity;
cout << "\n Cost: " << inv[i].cost << "\n\n";
return 0;

The output is shown here:

Hammers
Quantity on hand: 3
Cost: 9.99
Pliers
Quantity on hand: 12
Cost: 7.85
Wrenches

Quantity on hand: 19
Cost: 2.75

Chapter 5: Working with 1/0 309

Options and Alternatives

As explained, read() reads a specified number of bytes from a file. However, if you request

more bytes than are available in the file (such as when reading near or at the end of the file),
read() will obtain fewer than the requested number of bytes. You can determine how many
bytes were actually read by calling gcount(). It is shown here:

streamsize gcount() const

It returns the number of characters read by a previous call to read(), or to any other unformatted
input function. You can see the gcount() function in action in the Bonus Example for the
recipe Detecting EOF.

The preceding example used good() to check for errors, but there are several alternatives.
See Checking for Errors in the overview and the recipe Use Exceptions to Detect and Handle 1/O
Errors for details. You can also check for input errors by monitoring the status of the stream.
Because read() returns a reference to the stream upon which it is operating, you can apply
the ! operator to the returned object. Recall that when ! is applied to a stream, it returns the
result of fail() applied to the same stream. Therefore, you can test for a successful call to
read() like this:

if(lread(...)) { // ... handle the read error

For example, in the preceding program, you could use the following sequence to read the
inventory records, confirming the success of each read operation in the process:

// Read blocks of binary data.
for (int 1=0; 1i<3; 1++)
if (!fin.read((char *) &inv[i], sizeof (inventory))) {
cout << "Error reading file.";
// handle the error ...

}

Taking this approach to checking for errors streamlines your source code. However, because
each call to read() also results in an if statement being evaluated (which takes time), it does
not streamline your program's performance. As a general rule, exceptions offer a better
alternative in this type of situation.

Another way to read character-based unformatted input is to use either the get() or
getline() function. They are described in Use get() and getline() to Read from a File.

In some input situations, you will want to read data until you reach the end of the file.
You can determine when the end of a file has been encountered by calling eof() on the
stream. See Detecting EOF.

To read formatted data, open the output stream in text mode. See Read Formatted Data
from a Text File for details. To write formatted data to a file, use ofstream. See Write Formatted
Data to a Text File. To open a file for both input and output, create an fstream object. See Read
from and Write to a File.

310 Herb Schildt's C++ Programming Cookbook

r

Use get() and getline() to Read from a File

I Key Ingredients
Headers Classes Functions
<ifstream> ifstream istream &get(char &ch)
istream &get(char *buf, streamsize num)
istream &getline(char *buf, streamsize num)

The previous recipe described how to read unformatted binary data by using the read()
function. This function is especially useful when reading blocks of data, as the example
program in the previous recipe illustrated. However, when reading char-based data, such as
individual characters or lines of text, the get() and getline() functions may prove more
convenient. This recipe shows how to use them.

Step-by-Step
To read characters from a file by using get() involves these steps:
1. Open the file for input. It can be opened in either text or binary mode. Be aware,
however, that if the file is opened in text mode, some character translations may

take place, such as converting newline characters into carriage-return, linefeed
sequences.

2. One way to read a single character is to use get(char &ch).
3. One way to read a sequence of characters is to use get(char *buf, streamsize num).

4. Confirm that the read operations have been successful.
To read a complete line of text by use of getline() involves these steps:

1. Open the file for input. It can be opened in either text or binary mode. Be aware,
however, that if the file is opened in text mode, some character translations may
take place, such as converting newline characters into carriage-return, linefeed
sequences.

2. One way to read a line that is terminated by a newline character is to call
getline(char *buf, streamsize num).

3. Confirm that the read operations have been successful.

Discussion

Earlier recipes describe the steps needed to open a file for input or output in either text or
binary mode. See those recipes for details on opening a file.
There are several versions of get(). The two used by this recipe are shown here:

istream &get(char &ch)

istream &get(char *buf, streamsize nuim)

Chapter 5: Working with 1/0

The first form reads a single character from the invoking stream and puts that value in ch.
The second form reads characters into the array pointed to by buf until num-1 characters
have been read, a newline character is found, or the end of the file has been encountered.
The array pointed to by buf will be null-terminated by get(). If the newline character is
encountered in the input stream, it is not extracted. Instead, it remains in the stream until
the next input operation. Both return a reference to the stream.

The getline() function has the two forms. The one used by this recipe is shown here:

istream &getline(char *buf, streamsize num)

It reads characters into the array pointed to by buf until num-1 characters have been read,

a newline character has been found, or the end of the file has been encountered. The array
pointed to by buf will be null-terminated by getline(). If the newline character is encountered
in the input stream, it is extracted but is not put into buf. The function returns a reference to
the stream.

As you can see, getline() is virtually identical to the get(buf, num) version of get(). Both
read characters from input and put them into the array pointed to by buf until either num-1
characters have been read or the newline character is encountered. The difference is that
getline() reads and removes the newline from the input stream; get() does not.

It is important to understand that get() and getline() can be used on files opened in
either text or binary mode. The only difference is that if the file is opened in text mode,
some character translations, such as converting newlines to carriage-return, linefeed
sequences, may occur.

When using either get() or getline(), you must ensure that the array that will be receiving
input is large enough to hold the input that it will receive. Therefore, it must be at least as
large as the character count passed in num. Failure to follow this rule can result in a buffer
overrun, which can (and probably will) cause a program crash. It is also a potential threat to
security because it leaves your application open to the infamous "buffer overrun attack." In
general, extreme care must be exercised when inputting data into an array.

You can confirm the success of get() or getline() in the same way as you do a call to
read(). See the previous recipe and Checking for Errors in the overview near the start of this
chapter for details.

Example
The following example shows get() and getline() in action.

// Use get() and getline() to read characters.

#include <iostream>
#include <fstreams

using namespace std;
int main()

{

char ch;
char str[256];

// First, write some data to a file.

£l |

312 Herb Schildt's C++ Programming Cookbook

ofstream fout ("test.dat") ;

if (1fout)
cout << "Cannot open file for output.\n";
return 1;

}

// Write to the file.

fout << "This is a line of text.\n";

fout << "This is another line of text.\n";
fout << "This is the last line of text.\n";

fout.close() ;

if (1fout.good()) {
cout << "An error occurred when writing to the file.\n";
return 1;

}

// Now, open the file for input.

ifstream fin("test.dat", ios::in);

if (1fin)
cout << "Cannot open file for input.\n";
return 1;

cout << "Use get () :\n";

// Get the first three characters from the file.
cout << "Here are the first three characters: ";
for(int 1=0; i < 3; ++1i) {

fin.get (ch) ;

cout << ch;

}

cout << endl;

// Now, use get() to read to the end of the line.
fin.get (stxr, 255);

cout << "Here is the rest of the first line: ";
cout << str << endl;

// Because the previous call to get() did not remove
// the newline character from the input stream, it must
// be removed by another call to get(ch):

fin.get (ch) ;
cout << "\nNow use getline():\n";
// Finally, use getline() to read the next two lines.

fin.getline (str, 255);
cout << str << endl;
fin.getline(str, 255);
cout << str;

fin.close() ;

Chapter 5: Working with 1/0 313

if (1fin.good())
cout << "Error occurred while reading or closing the file.\n";
return 1;

}

return O;

}
The output is shown here:

Use get () :
Here are the first three characters: Thi
Here is the rest of the first line: s is a line of text.

Now use getline() :
This is another line of text.
This is the last line of text.

In the program, notice this sequence:

// Now, use get() to read to the end of the line.
fin.get (str, 255);

cout << "Here is the rest of the first line: ";
cout << str << endl;

// Because the previous call to get() did not remove

// the newline character from the input stream, it must
// be removed by another call to get(ch):

fin.get (ch) ;

As explained, the get(buf, num) version of get() does not remove a newline character
from the input stream. Therefore, the newline will be read by the next input operation.
Often, as is the case with the example program, it is necessary to remove and discard the
newline character. This is handled by the call to the get(ch) version.

Options and Alternatives

There is another form of get() that provides an alternative when reading just one character.
It is shown here:

int get()

This form of get() returns the next character from the stream. It returns a value that represents
end-of-file if the end of the file is reached. For char-based streams, such as ifstream, the EOF
value is char_traits<char>::eof().

When reading a sequence of characters via get(), you can specify the delimiter by using
this form:

istream &get(char *buf, streamsize num, char delim)

It works just like get(buf, num) described in the recipe, except that it stops reading when the
character passed in delim is encountered (or num-1 characters have been read, or the end of
the file has been reached).

314 Herb Schildt's C++ Programming Cookbook

When reading a line of text via getline(), you can specify the delimiter by using this form:
istream &getline(char *buf, streamsize num, char delim)

It works just like getline(buf, num) described in the recipe, except that it stops reading when
the character passed in delim is encountered (or num-1 characters have been read, or the end
of the file has been reached).

”~

Read from and Write to a File

I Key Ingredients
Headers Classes Functions
<fstream> fstream void close()

ostream &flush()
istream &get(char &ch)
bool good() const
void open(const char *fname,
ios::openmode mode = ios::in | ios::out)
ostream &put(char ch)

It is possible to open a file so that it can be used for both input and output. This is commonly
done when a data file needs to be updated. Instead of rewriting the entire file, you can write
just a small portion of it. This is especially valuable in files that use fixed-length records,
because it offers a convenient way to update one record without rewriting the entire file. Of
course, opening a file for both input and output is useful in other situations, such as when
you want to read the contents of a file, modify it, and then write the modified contents back
to the same file. By using a file opened for input and output, you only need to open and close
the file once, thus streamlining your code. Whatever your purpose, this recipe shows the
basic procedures necessary to read from and write to a file.

Step-by-Step

To perform both input and output operations on a file involves the following steps:

1. Open the file for both reading and writing by creating an object of type fstream. The
fstream class inherits both ifstream and ofstream. This means that it is capable of
both input and output operations.

2. Use the output functions defined by ofstream to write to the file. The one used by
this recipe is put().

3. Use the input functions defined by ifstream to read from the file. The one used by
this recipe is get().

Chapter 5: Working with 1/0 315

4. For many compiler implementations, when switching between input and output,
you will need to call seekg(), seekp(), or flush(). This recipe uses flush().

5. Close the file.

6. Confirm that the I/O operations have been successful. This can be done by calling
good() on the input stream or in a number of other ways.

Discussion

A general overview of opening and closing a file is found in Opening and Closing a File near
the start of this chapter. Information relating specifically to fstream is presented here.

The fstream class inherits the iostream class, which inherits both istream and ostream.
This makes it able to support both input and output operations. Furthermore, all of the
techniques described by the preceding recipes, such as reading from and writing to an
ifstream or ofstream, apply to fstream. The only difference is that fstream supports both
read and write.

To perform input/output operations, you must have an object of type fstream that
supports both input and output operations. The fstream class uses the header <fstream>
and it defines these two constructors:

fstream()
explicit fstream(const char *fname, ios::openmode mode = ios::in | ios::out)

The first creates an fstream instance that is not yet linked to a file. The second creates an
fstream instance and then opens the file specified by fname with the mode specified by mode.
Notice that mode defaults to both ios::in and ios::out. Also, notice that it does not include
the ios::binary flag. Therefore, by default, the file is opened in text mode. To open a file for
binary I/0O, include the ios::binary flag. When a file is opened in text mode, some character
translations may occur, such as a newline being replaced by a carriage-return, linefeed
sequence. Opening a file in binary mode prevents such translations.

If you use the default constructor, then you will need to link a file to the fstream instance
after it is constructed by calling open(). The version defined by fstream is shown here:

void open(const char *fname, ios::openmode mode = ios::in | ios::out)

It opens the file specified by fname with the mode specified by mode. Notice that, like the
fstream constructor, mode defaults to ios::in | ios::out. Therefore, the file is automatically
opened for read /write operations when mode defaults.

Before attempting to write to the file, you must confirm that the file has been opened.
You can do this in various ways. The approach used by this recipe is to apply the ! operator
to the fstream instance. Recall that the ! operator returns the outcome of a call to fail() on
the stream. Therefore, if it returns true, the open operation has failed.

Once open, you can read from and write to the file using any of the methods provided
by istream and ostream, such as get(), put(), read(), and write(). These methods have
been described by the preceding recipes.

For some compilers, you will need to flush output by calling flush() or perform a seek
operation by calling seekg() or seekp() when switching between read and write operations.

316

Herb Schildt's C++ Programming Cookbook

This recipe uses flush(). (For details on seekg() and seekp(), see Use Random-Access File 1/O.)
The flush() method is defined by ostream and is shown here:

ostream &flush()

It flushes the output buffer. This ensures that the contents of the buffer are written to the
file. The C++ I/0O system uses buffers to improve the efficiency of file operations. For input,
data is read from the file a buffer at a time. When the end of the input buffer is reached, the
next buffer's worth is read. For output, when you write data, it is actually written to an
output buffer. It is not until that buffer is full that the data is physically written to the file.
The flush() function alters this behavior and causes the current contents of the buffer to be
written to the file, whether the buffer is full or not. This ensures that the contents of the file
immediately reflect any write operations that may have taken place. As it relates to read /write
files, calling flush() after you have written to the file ensures that read operations reflect
the actual state of the file.

Example

The following example shows how to open a text file called test.dat for reading and writing.
The test.dat file must exist. After it opens the file, it writes three X's to the start of the file.
Next, it flushes the output buffer and then reads the next ten characters from the file.

// Use fstream to read and write a file.

#include <iostream>
#include <fstream>

using namespace std;

int main ()

{

char ch;

// Open a file for input and output operations.
fstream finout ("test.dat");

if (!finout)
cout << "Cannot open file for output.\n";
return 1;

}

// Write three X's.
for(int i=0; 1 < 3; ++1i) finout.put('X');

if (!finout.good()) {
cout << "Error occurred while writing to the file.\n";
return 1;

1

// Flush the output buffer.
finout.flush() ;

Chapter 5: Working with 1/0 317

// Get the next ten characters from the file.
cout << "Here are the next ten characters: ";
for(int i1=0; i < 10; ++1i) {

finout.get (ch) ;

cout << ch;

}

cout << endl;

if (!finout.good()) {
cout << "Error occurred while reading from the file.\n";
return 1;

}

finout.close() ;
if (!finout.good()) {

cout << "Error occurred while closing the file.\n";
return 1;

}

return O;

}

Assuming that test.dat contains the following;:
abcdefghijklmnop

the program will produce this output:

Here are the next ten characters: defghijklm
and the contents of test.dat will be changed to:
XXXdefghijklmnop

Options and Alternatives

For performing read/write operations on a file, there really is no good alternative to using
fstream.

 Detecting EOF

I Key Ingredients
Headers Classes Functions
<fstream> ifstream bool eof() const

318

Herb Schildt's C++ Programming Cookbook

In some cases, you will want to know when the end of the file has been reached. For example,
if you are reading a list of values from a file, then you might want to continue reading until
there are no more values to obtain. This implies that you have some way to know when the
end of the file has been reached. Fortunately, the C++ I/O system supplies such a function
to do this: eof(). This recipe shows how to use it.

Step-by-Step
To detect EOF involves these steps:

1. Open the file being read for input.
2. Begin reading data from the file.

3. After each input operation, determine if the end of the file has been reached by
calling eof().

Discussion

The eof() function determines if the end of a file has been reached. It is declared by istream,
which is inherited by ifstream. It is shown here:

bool eof() const

It returns true if the end of the stream has been encountered and false otherwise.

There is an important aspect of the C++ 1/O system that relates to end-of-file. When
an attempt is made to read at the end of the file, both ios::eofbit and ios:failbit are set.
Therefore, encountering the end of the file is also considered an error condition, even if you
intended it to happen. Furthermore, if you want to detect an input failure that is caused by
something other than the encounter with end-of-file, then you will need to explicitly test for
this by excluding the end-of-file condition from the check. For example, this if statement
succeeds if either badbit or failbit is set, but not eofbit:

if (1fin.eof () && (fin.fail() || fin.bad())) { // ...

Remember, an input operation can fail for many reasons. Encountering end-of-file is just one.
Because the I/O status flags stay set until cleared, encountering end-of-file will cause

good() to return false, even though you purposely caused the condition. You need to take

this into account when watching for and handling errors. For example, after the end of

the file has been encountered, you can use the clear() function to reset the I/O flags. See

Checking for Errors in the overview for details, including the clear(), good(), bad(), and

fail() functions.

Example

The following example demonstrates eof(). It creates a program that reads and displays the
contents of a text file. It uses eof() to know when all of the file has been read. Notice that it
uses the get() function defined by istream. It is described in Use get() and getline() to Read
from a File.

// Use eof () to read and display a text file.
!/

// The name of the file is specified on the command

Chapter 5: Working with 1/0

// line. For example, assuming that you call this program
// Show, the following command line will display the
// file called test.txt:

//
// Show test.txt

!/

#include <iostream>
#include <fstreams>

using namespace std;

int main(int argc, char *argvl[])

{

char ch;

if (argc != 2) {
cout << "Usage: Show <filename>\n";
return 1;

}

// Create an ifstream object and attempt to open the file.
ifstream fin(argv[1]) ;

// Verify that the file has been successfully opened.

if (1fin) {
cout << "Cannot open file.\n";
return 1;
}
do {
// Read the next character, if there is one.
fin.get (ch) ;

// Check for an error NOT caused by reaching EOF.
if (1fin.eof () && (fin.fail() || fin.bad())) {
cout << "Input Error\n";
fin.close();
return 1;

}

// If EOF not yet encountered, display the next character.
if(!fin.eof ()) cout << ch;
} while(!fin.eof ());

// Clear the eof and fail bits.
fin.clear () ;

// Close the input file.
fin.close() ;

// Confirm that the file closed without error.
if (1fin.good()) {

319

320

Herb Schildt's C++ Programming Cookbook

cout << "Error closing file.";
return 1;

}

return 0;

}

Notice that the program checks for input errors that are unrelated to an end-of-file condition.
This lets the program report if something unexpected happened when reading the file. After
end-of-file is encountered, the I/O status bits are cleared and the file is closed. This lets us
confirm that the close operation succeeded without error. Of course, your own applications
will dictate how you approach checking for errors. The foregoing program shows just one
example.

Bonus Example: A Simple File-Comparison Utility

The following program puts eof() to good use. It creates a simple file utility that compares
two files. It opens both files for binary input. This means that the program can be used on
both text and binary files, such as executable files. It compares the two files by reading a
buffer of data from each by use of read() and then comparing the contents of the buffers. It
uses eof() to determine when both files have been read to their completion. If the files are
differing lengths, or if their contents don't match, the files differ. Otherwise, they are the
same. Notice that the program uses the gcount() function to determine how many bytes of
data have been obtained by read(). When input is performed at the end of the file, the
number of bytes read may be less than requested in the call to read().

// A simple file-comparison utility.

#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char *argvl[])

{

bool equal = true;
bool ferr = false;

unsigned char bufl[1024], buf2[1024];

if (arge!=3) {
cout << "Usage: compfiles <filel> <file2>\n";

return 1;
}
// Open both files for binary operations.
ifstream fl(argv([l], ios::in | ios::binary);
if (1£1) |
cout << "Cannot open " << argv[l] << endl;
return 1;
}

ifstream f2(argv([2], ios::in ios: :binary) ;

Chapter 5:

if (1£2) |
cout << "Cannot open " << argv[2] << endl;
fl.close();
if (1f1.good())
cout << "Error closing " << argv[l] << endl;
return 1;

cout << "Comparing files...\n";

// Read a buffer full of data from both files.
fl.read((char *) bufl, sizeof bufl);
f2.read((char *) buf2, sizeof buf2);

// Check for read errors.

if(1fl.eo0f () && !fl.good())
cout << "Error reading " << argv[l] << endl;
ferr = true;
break;

}

if (1f2.e0f () && !f2.good()) {
cout << "Error reading " << argv[2] << endl;
ferr = true;
break;

}

// If the two files differ in length, then at the
// end of the file, the gcounts will be different.

if (fl.gcount () != f2.gcount())
cout << "Files are different lengths.\n";
equal = false;
break;

}

// Compare contents of buffers.
for(int i=0; i < fl.gcount(); ++1i)
if (bufl[i] !'= buf2[i]) {
cout << "Files differ.\n";
equal = false;
break;

}

} while(!fl.eof () && !f2.eo0f () && equal);

if (Iferr && equal) cout << "Files are the same.\n";
// Clear eofbit, and possibly error bits.
fil.clear();

f2.clear () ;

fl.close();

Working with 1/0

3

322 Herb Schildt's C++ Programming Cookbook

f2.close () ;

if (1fl.good() || !f2.good()) {
cout << "Error closing files.\n";
return 1;

1

return 0;

}

Options and Alternatives

You can detect end-of-file in several other ways. First, you can use the rdstate() function,
which returns all of the status flags in the form of a bitmask. You can then test for end-of-file
by OR-ing ios::eofbit with the value returned by rdstate(). (The rdstate() function is
described in Checking for Errors.)

If you use this form of get()
int get()

then the value obtained from ifstream::traits_type::eof() is returned when end-of-file is
encountered. The typedef traits_type specifies values associated with the type of characters
used by the stream, which are char in the case of ifstream. Therefore, when using this form
of get(), the following sequence detects end-of-file:

ch = fin.get () ;
if (ch == ifstream::traits_type::eof()) cout << "EOF found";

Of course, using the eof() function defined by ifstream is much easier!

”~

Use Exceptions to Detect and Handle 1/0 Errors

I Key Ingredients
Headers Classes Functions
<ios> ios void exceptions(iostate exc)
<ios> ios_base::failure const char *what() const

The C++1/0 system gives you two ways to watch for errors. First, you can use the functions
good(), bad(), fail(), and rdstate() to explicitly interrogate the status flags. This approach
is described in Checking for Errors in the overview at the start of this chapter. It is also the
approach used by most of the recipes in this chapter because it is the way in which errors
are detected by default. The second way involves the use of exceptions. In this approach,

Chapter 5: Working with 1/0 323

an I/O error causes an exception to be thrown. Your code can catch this exception and take
appropriate action to handle the error. This recipe shows how to use exceptions to detect
and handle I/O errors.

Step-by-Step

To detect and handle I/O errors through the use of exceptions involves the following steps:

1. On the stream that you want to monitor for errors, call the exceptions() function,
passing in an iostate bitmask that contains the flag or flags for the exception or
exceptions that you want to generate errors.

2. Perform I/O operations from within a try block.

3. The catch statement of the try block must catch exceptions of type failure. This is
the type of exception generated by the I/O system.

4. To determine what type of failure occurred, call what() on the exception object.

Discussion

By default, the I/O system does not throw an exception when an error occurs. Therefore, to
use exceptions, you must explicitly request the use of exceptions. Furthermore, you must
specify what types of errors will throw an exception. To do this, you will use the exceptions()
function. This function is defined by ios_base and is inherited by all stream classes. It is
shown here:

void exceptions(iostate exc)

Here, exc is a bitmask that contains iostate values that represent the conditions that will
throw an exception. These values are ios_base::failbit, ios_base::badbit, ios_base::goodbit,
and ios_base::eofbit. As it relates to char-based streams, these values are typically referred
to as ios::failbit, ios::badbit, ios::goodbit, and ios::eofbit. Therefore, to cause a char stream
called mystream to generate exceptions whenever an error causes failbit to be set, you can
use the following;:

mystream.exceptions (ios::failbit) ;

After this call, any time an I/O error causes failbit to be set, an exception is generated. One
other point: As explained in Checking for Errors in the overview at the start of this chapter,
end-of-file is not always considered an error in the strict sense, but you can use exceptions
to watch for it.

Once you have turned on exceptions, you must perform I/O operations inside a try
block that catches exceptions that have a base type of ios_base::failure. Notice that this class
is a member class of ios_base. It is declared as shown here:

class ios_base::failure : public exception {
public:

explicit failure(const string &str);

virtual ~failure();

virtual const char *what() const throw();

};

3%

Herb Schildt's C++ Programming Cookbook

Notice that it inherits exception, which is a base class for all exceptions. The what()
function returns a string that describes the exception. In theory, you might be able to use the
string returned by what() to determine what occurred. In practice, it's usually better to rely
on your own program logic to perform this function, because the string returned by what()
may not be specific to the actual cause of the error. For example, it might just state which
error bit was set. Furthermore, this string may (probably will) differ between compilers, or
even between different versions of the same compiler. This is why it is often not particularly
helpful.

Example

The following example shows how to use exceptions to handle errors when performing I/O.
It reworks the example program from Write Unformatted Binary Data to a File so that it uses
exceptions to detect and handle I/O errors. Notice that each I/O operation—opening the
file, reading data, and closing the file—is performed within its own try block. This makes it
easy to respond to each exception in an individualized manner. Of course, the approach that
you use must be suited to your specific application and needs. Notice that the program uses
the string returned by what() to display the error. This is included simply for demonstration
purposes. Except for debugging, you would not normally display this string.

// Use exceptions to watch for and handle I/O errors.

//

// This program reworks the example program in:
//

// Write Unformatted Binary Data to a File

//

// so that it uses exceptions to detect and handle I/0 errors.

#include <iostream>
#include <fstream>
#include <cstring>

using namespace std;

// A simple inventory structure.
struct inventory ({
char item[20];
int quantity;
double cost;
Vi
int main()
{

int completion status = 0;

// Create an output stream.
ofstream fout;

// Turn on exceptions for I/O errors.
fout.exceptions (ios::failbit | ios: :badbit) ;

// Attempt to open the file for binary output.

Chapter 5: Working with 1/0

try {
fout.open("InvDat.dat", ios::out | ios::binary) ;
} catch(ios_base::failure exc)
cout << "Cannot open file.\n";
cout << "String returned by what(): " << exc.what() << endl;
return 1;

}

// Create some inventory data.
inventory invI[3];

strcpy (inv[0] .item, "Hammers") ;
inv[0] .quantity = 3;
inv[0] .cost = 9.99;

strcpy (inv[1l] .item, "Pliers");
inv[1l] .quantity = 12;
inv[1l] .cost = 7.85;

strcpy (inv[2] .item, "Wrenches");
inv[2] .quantity = 19;
inv[2] .cost = 2.75;

// Write inventory data to the file. If an error occurs,
// the exception will be handled by the catch statement.

try {
for (int i=0; 1i<3; i++)
fout.write((const char *) &inv[i], sizeof (inventory)) ;

} catch(ios_base::failure exc)
cout << "An error occurred when writing to the file.\n";

cout << "String returned by what(): " << exc.what() << endl;
completion_ status = 1;
}
// Also handle an error that might occur when closing the file.
try {

// Close the file.
fout.close() ;

} catch(ios_base::failure exc) ({
cout << "An error occurred when attempting to close the file.\n";
cout << "String returned by what(): " << exc.what() << endl;
completion_ status = 1;

}

return completion status;

There are some important points that need to be made about the preceding example.
First, notice that if the file cannot be opened, then the program exits. This is proper, because
if the file can't be opened, then it can't be written to and there is no reason to continue.
Furthermore, because the file isn't open, it does not need to be closed. Therefore, it is proper
to exit the program at this point.

325

326 Herb Schildt's C++ Programming Cookbook

Next, notice that the exception handler for write() does not exit the program. Instead, it
sets the completion_status variable to 1 and then lets program execution continue. At this
point, even though an error has occurred, the file is still open and should be closed. Therefore,
execution is allowed to continue on to the call to close().

It is important to understand that in this example, the file will be automatically closed
when the program ends because ofstream's destructor closes the file (as explained in the
overview presented earlier in this chapter). However, in most real-world programs, the
situation is not so easy. For example, if the user is allowed to retry a file operation, then it
is imperative that you ensure that the previous attempt closed the file. Otherwise,
problems will result. For example, it may become impossible to open the file again, since it
was never closed. Also, the program will consume system resources, such as file handles,
which are finite in number. The point is that since an exception causes an abrupt change in
the normal flow of execution, it is necessary to ensure in such cases that any file that was
opened is closed.

Options and Alternatives

As explained in Checking for Errors, you can watch for errors by using the functions good(),
fail(), rdstate(), and, in some cases, eof(). Although the use of exceptions can simplify
error handling in some cases, for many short programs, such as those in this book, the use
of the error-reporting functions is easier. This is especially true when what you care about is
that the overall I/O operation—opening, reading or writing, and closing—succeeded. For
this reason, most of the programs in this book that perform file I/O will use the error-
reporting functions and not exceptions. Of course, which approach you use is dictated by
the specific aspects and needs of your application.

ra

" Use Random-Access File 1/0

I Key Ingredients
Headers Classes Functions
<fstream> ifstream istream &seekg(off_type offset,
ios::seekdir origin)
<fstream> ofstream ostream &seekp(off_type offset,
ios::seekdir origin)

In general, there are two ways in which a file can be accessed: sequentially or randomly.
With sequential access, the file pointer moves through the file in a strictly linear fashion,
from start to finish. With random access, it is possible to position the file pointer at any
location within the file. Thus, random access lets you read from or write to a specific portion
of a file, as needed, on demand. It is important to understand that any file can be accessed
in either fashion. Therefore, random access is not dependent upon the file, but rather the

Chapter 5: Working with 1/0 327

functions used to access the file. That said, usually, random access is used on a file that is
comprised of fixed-length records. Through random access, it is possible to read or write a
specific record. This recipe shows the techniques required to use random access in C++.

Step-by-Step

To use random access involves these steps:

1. Open the desired file for binary I/O.

2. For input files, move the get pointer by calling seekg().
3. For output files, move the put pointer by calling seekp().
4.

For files capable of both input and output, use seekg() to move the get pointer. Use
seekp() to move the put pointer.

5. Once the file location has been set, perform the desired operation.

Discussion

The C++1/0 system manages two pointers associated with a file. One is the get pointer,
which specifies where in the file the next input operation will occur. The other is the put
pointer, which specifies where in the file the next output operation will occur. Each time an
input or output operation takes place, the appropriate pointer is automatically sequentially
advanced. By using the random-access functions, you can position the get or put pointer at
will, enabling the file to be accessed in nonsequential fashion.

The seekg() and seekp() functions change the location of the get and set pointers
respectively. They each have two forms. The ones used by this recipe are shown here:

istream &seekg(off_type offset, ios::seekdir origin)
ostream &seekp(off_type offset, ios::seekdir origin)

Here, off_type is an integer type defined by ios that is capable of containing the largest
valid value that offset can have. seekdir is an enumeration defined by ios_base (which is
inherited by ios) that determines how the seek will take place.

The seekg() function moves the associated file's get pointer offset number of characters
from the specified origin, which must be one of these three values:

beg Beginning-of-file
cur Current location
end End-of-file

The seekp() function moves the associated file's current put pointer offset number of
characters from the specified origin, which must be one of the values just shown.

The seekp() function is declared by ostream and is inherited by ofstream. The seekg()
function is declared by istream and is inherited by ifstream. Both istream and ostream are
inherited by fstream, which is capable of both input and output operations.

328

Herb Schildt's C++ Programming Cookbook

Generally, random-access 1/O should be performed only on those files opened for binary
operations. The character translations that may occur on text files could cause a position
request to be out of sync with the actual contents of the file.

When a file is opened for both read and write operations, such as when using an fstream
object, then you must usually perform a seek operation when switching between reading
and writing. (See Read from and Write to a File.)

Example

The following program uses both seekp() and seekg() to reverse characters in a file. The
name of the file and the number of characters to reverse, starting from the beginning, is
specified on the command line. Because both read and write operations are needed, the file
is opened using fstream, which is capable of both input and output.

// Demonstrate random-access I/O.

//

// This program reverses the first N characters within a
// file. The name of the file and the number of characters
// to reverse are specified on the command line.

#include <iostream>
#include <fstream>
#include <cstdlibs>

using namespace std;

int main(int argc, char *argv([])
{

long n, i, j;

char chl, ch2;

if (argc!=3) {
cout << "Usage: Reverse <filename> <num>\n";
return 1;

}

// Open the file for binary input and output operations.
fstream finout (argv[1l], ios::in | ios::out | ios::binary);

if (!finout)
cout << "Cannot open input file.\n";
return 1;

}

// Convert the string representation of the number of
// characters to reverse into a long value.
n = atol(argv[2]) - 1;

// Use random access to reverse the characters.
for(i=0, j=n; i < j; ++i, --3) {

// First, get the two characters.

Chapter 5: Working with 1/0

finout.seekg(i, ios::beg);
finout.get (chl) ;
finout.seekg(j, ios::beg);
finout.get (ch2) ;

// Now, write them to the opposite locations.
finout.seekp (i, ios::beg);

finout.put (ch2) ;

finout.seekp(j, ios::beg);

finout.put (chl) ;

// Confirm the success of each read/write cycle.
if (1finout.good()) {
cout << "Error reading or writing characters.";
finout.clear() ;
break;

}
}

// Close the file.
finout.close() ;

// Confirm that no errors occurred when closing the file.

if (!finout.good()) {
cout << "A file error occurred.";
return 1;

return 0;

To use the program, specify the name of the file that you want to reverse, followed by
the number of characters to reverse. For example, to reverse the first ten characters of a file
called TEST, use this command line:

reverse test 10

If the file had contained:

abcdefghijklmnopgrstuvwxyz

then the file will contain the following after the program executes:

jihgfedcbaklmnopgrstuvwxyz

Bonus Example: Use Random-Access 1/0 to Access Fixed-Size Records

As mentioned, one of the main uses of random-access I/O is on databases that contain fixed-
size records. For example, consider a database that contains inventory information. To find a
specific entry in that file, you will need to scan it record by record. You may also want to
update a specific record or delete a record. These types of operations are made easy through
the use of random-access 1/O. The following example gives you an idea of the process.

329

330

Herb Schildt's C++ Programming Cookbook

It uses the InvDat.dat created by the example program in Write Unformatted Binary Data to a
File. It displays the entry that you specify by number on the command line.

// Use random-access I1I/0 to read specific inventory records
// from a data file. This program reads the file InvDat.dat,
// which is created by the example program in the recipe:

!/

// Write Unformatted Binary Data to a File

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

// A simple inventory structure.
struct inventory {

char item[20];

int quantity;

double cost;

Vi

int main(int argc, char *argvl[])
inventory entry;
long record num;

if (argc != 2) {
cout << "Usage: ShowRecord <record-num>\n";
return 1;

}

// Convert the string representation of the entry
// number into a long value.
record num = atol (argv[1]);

// Confirm that the record number is greater than or

// equal to zero.

if (record num < 0)
cout << "Record numbers must be greater than or equal to 0.\n";
return 1;

}

// Open the file for binary input.
ifstream fInvDB("InvDat.dat", ios::in | ios::binary);

// Confirm that the file opened without error.
if (1£InvDB) {

cout << "Cannot open file.\n";

return 1;

}

// Read and display the entry specified on the command line.

Chapter 5: Working with 1/0 331

// First, seek to the desired record.
fInvDB.seekg(sizeof (inventory) * record num, ios::beg);

// Next, read the record.
fInvDB.read((char *) &entry, sizeof (inventory));

// Close the file.
fInvDB.close () ;

// Confirm that there were no file errors.

if (1£InvDB.good ()) {
cout << "A file error occurred.\n";
return 1;

}

// Display the inventory for the specified entry.
cout << entry.item << endl;

cout << "Quantity on hand: " << entry.quantity;
cout << "\nCost: " << entry.cost << endl;
return 0;

}

Here is a sample run:

C:>ShowRecord 1

Pliers
Quantity on hand: 12
Cost: 7.85

The key feature of the program is the use of seekg() to move to the specified record
through the use of this statement:

fInvDB.seekg(sizeof (inventory) * record num, ios::beg);

To find a specific record, it first multiplies the size of the inventory structure (which is the
length of each record in the database) by the number of the record to obtain. It then seeks to
this location in the file. The same basic approach can be applied to any file that contains
fixed-length records.

Using random access, it is also possible to update a record in place. For example, in the
preceding program, if you open the file for both input and output by using an fstream
object, as shown here:

fstream fInvDB ("InvDat.dat",
ios base::in | ios_base::binary | ios::out);

then the following sequence changes the specified record and then reads the updated
information:

// Create a new inventory item.
strcpy (entry.item, "Drill");
entry.quantity = 3;

entry.cost = 9.99;

332 Herb Schildt's C++ Programming Cookbook

// Set the put pointer at the start of the record by calling seekp() .
fInvDB.seekp (sizeof (inventory) * record num, ios::beg);

// Change the record.
fInvDB.write ((char *) &entry, sizeof (inventory)) ;

// Set the get pointer to the start of the record by calling seekg() .
fInvDB.seekg (sizeof (inventory) * record num, ios::beg);

// Next, read the updated record.
fInvDB.read ((char *) &entry, sizeof (inventory)) ;

Options and Alternatives
You can determine the current position of each file pointer by using these functions:

pos_type tellg()

pos_type tellp()

Here, pos_type is a type defined by basic_ios that is capable of holding the largest value
that either function can return. You can use the values returned by tellg() and tellp() as
arguments to the following forms of seekg() and seekp(), respectively:

istream &seekg(pos_type pos)
ostream &seekp(pos_type pos)

These functions allow you to save the current file location, perform other file operations,
and then reset the file location to its previously saved position.

~ Look Ahead in a File

I Key Ingredients
Headers Classes Functions
<fstream> ifstream istream &ignore(streamsize num=1,

int_type delim =
traits_type::eof())
int_type peek()
istream &unget()

There are some input situations that are made easier by being able to look ahead in a file.
For example, if a file contains context-sensitive information, then you might need to process
one part of it differently than you do another. C++ provides three functions that aid in this

Chapter 5: Working with 1/0 333

task: peek(), unget(), and ignore(). They enable you to obtain but not remove the next
character in the file, return a character to the stream, and skip over one or more characters.
This recipe shows how they are used.

Step-by-Step

File look-ahead involves the following steps:

1. To obtain but not remove the next character from the input stream, call peek().
2. To return a character to the input stream, call unget().

3. To ignore characters until a specific character is encountered or a specific number of
characters is ignored, call ignore().

Discussion

You can obtain the next character in the input stream without removing it from that stream
by using peek(). It has this prototype:

int_type peek()

It returns the next character in the stream or the end-of-file indicator if end-of-file is
encountered, which is traits_type::eof(). The int_type type is a typedef for some form of
integer.

You can return the last character read from a stream back to that stream by using unget().
This lets the character be read by the next input operation. The unget() function is
shown here:

istream &unget()

If no characters have yet been read from the stream, an error occurs and badbit is set. The
function returns a reference to the stream.

The ignore() function reads and discards characters from the input stream. It has this
prototype:

istream &ignore(streamsize num=1, int_type delim=traits_type::eof())

It reads and discards characters until either num characters have been ignored (1 by default)
or until the character specified by delim is encountered. By default, delim is traits_type::eof().
If the delimiting character is encountered, it is removed from the input stream. If end-of-file
is encountered, then the eofbit status flag associated with the stream is set. The streamsize
type is a typedef for some form of integer that is capable of holding the largest number of
bytes that can be transferred in any one I/O operation. The type int_type is a typedef for
some form of integer. The function returns a reference to the stream.

Of the three functions, the one that is the most interesting is ignore() because it gives
you an easy and efficient way to search a stream for an occurrence of a character. Once this
character has been found, you can begin reading (or writing) the stream at that point. This
can be very useful in a number of situations. For example, if you have a stream that contains
employee ID numbers in the form #dddd (such as #2244), then you can easily search for an
ID number by ignoring characters until a # is found.

334

Herb Schildt's C++ Programming Cookbook

Example

The following example shows peek(), unget(), and ignore() in action. The program first
creates a data file called test.dat that contains several employee IDs. However, there are two
types of IDs. The first is a four-digit number in the form #dddd, such as #0101. The second ID
is a placeholder that uses a word to describe why the ID number is missing. The program
then looks for, reads, and displays all IDs in the file. To accomplish this, it makes use of file
look-ahead.

// Demonstrate peek (), unget(), and ignore() .

//

// This program reads a file that contains two types
// of IDs. The first is a four-digit number in this
// form: #dddd. The second is a word that describes
// why the ID number is missing. The program creates
// a data file called test.dat that contains several
// ID numbers. The program then looks for, reads, and
// displays all IDs in the file.

#include <iostream>
#include <fstream>
#include <cctypes>

using namespace std;

int main ()
{
char ch;
char idnum[5];

// Null-terminate idnum so that it can hold a char * string.
idnum([4] = 0;

// Create an ofstream object and attempt to open the file test.dat.
ofstream fout ("test.dat") ;

// Verify that the file has been successfully opened.
if (1fout) {
cout << "Cannot open test.dat for output.\n";
return 1;

}

// Write some information to the file.
fout << "Tom Tommy #5345\nRalph Rolof #denied\nTed Terry #6922\n";
fout << "Harry Holden #pending\n, Skip Jones, #8875\n";

// Close the output file.
fout.close() ;

if (1fout.good()) {
cout << "Error creating data file.";
return 1;

}

Chapter 5: Working with 1/0

// Attempt to open the test.dat file.
ifstream fin("test.dat") ;

if (1fin) {
cout << "Cannot open test.dat for input.\n";
return 1;

}

// Use exceptions to watch for errors.
fin.exceptions (ios::badbit | ios::failbit);

try {

// Find and display all ID numbers:

do {
// Find the start of an ID number.
fin.ignore (40, '#');

// If the end of the file is encountered, stop reading.
if (fin.eof ()) {

fin.clear(); // clear eofbit

break;

}

// Obtain but don't extract the next character after the #.
ch = fin.peek();

// See if the next character is a digit.
if (isdigit(ch)) {

// If the character is a digit, read the ID number. Because
// idnum has a null in its fifth character, reading four

// characters into the first four elements creates a

// null-terminated string.

fin.read((char *)idnum, 4);

cout << "ID #: " << idnum << endl;
} else {

// Since the next char is not a digit, read the description.
cout << "ID not available: ";

ch = fin.get () ;
while (isalpha(ch)) {
cout << ch;
ch = fin.get();

i

// Put back the non-letter char so that it can be found
// and processed by other get() statements.
fin.unget () ;

335

336 Herb Schildt's C++ Programming Cookbook

cout << endl;

} while(fin.good()) ;
} catch(ios_base::failure exc)
cout << "Error reading data file.\n";

}

try {
// Close test.dat for input.

fin.close() ;

} catch (ios base::failure exc) ({
cout << "Error closing data file.";
return 1;

}

return 0;

}

The output is shown here:

ID #: 5345
ID not available: denied
ID #: 6922
ID not available: pending
ID #: 8875

This program uses look-ahead to read the IDs in the file. First, it uses ignore() to find a
character. This character marks the start of an ID. It then uses peek() to determine if what
follows is an actual ID number or a verbal description. If the character obtained from peek()
is a digit, a four-digit number is read. Otherwise, the description is read. The description
ends as soon as a non-alphabetic character is read. In this case, the last character read is put
back into the input stream.

One other point of interest: Notice that the program uses a combination of exceptions
and error-detecting functions to watch for errors. This is part of the power of the C++1/0
system: You can use whatever approach works best for the situation at hand.

Options and Alternatives

As explained, unget() returns the most recently read character to the invoking stream. You
can "return” a character other than the one most recently read by calling putback(). It is
shown here:

istream &putback(char ch)

It puts ch into the stream so that it will be the first character read by the next input operation.
If an error occurs, badbit is set on the invoking stream.

Another function that is sometimes useful in look-ahead situations is readsome().
Essentially, it reads characters from the input buffer. If there are not enough characters in
the buffer to fulfill the request, then eofbit is set on the invoking stream. The function is
shown here:

streamsize readsome(char *buf, streamsize num)

Chapter 5: Working with 1/0 337

It attempts to read num characters from the input buffer, storing them in buf. It returns the
number of characters actually read.

Another function that can be useful when looking ahead in a file (and for many other
purposes) is gcount(). It is shown here:

streamsize gcount() const

It returns the number of characters read by a previous call to an unformatted input function.

" Use the String Streams

I Key Ingredients
Headers Classes Functions
<sstream> istringstream string str() const
ostringstream
stringstream

As explained in I/O Overview, C++ supports the use of a string as a source or destination
for I/O operations. To enable this, it defines three string stream template classes called
basic_istringstream, basic_ostringstream, and basic_stringstream. Their char-based forms
are shown here:

istringstream Uses a string for input.
ostringstream Uses a string for output.
stringstream Uses a string for input and output.

In general, the string stream classes work like the other stream classes, the only difference
being that the source or destination for data is a string rather than some external device.
This recipe demonstrates their use.

Step-by-Step
Using a string stream involves these steps:
1. Create a string stream by using one of the string stream constructors.

2. Perform I/O on the stream in the same way as you would using any other type of
stream, such as a file stream.

3. To obtain the contents of a string buffer, call str().

338

Herb Schildt's C++ Programming Cookbook

Discussion
To create a string stream, you will use one of the string stream constructors. Each string
stream defines two constructors: one that initializes the string stream with a string and
another that doesn't. When performing input, you will usually initialize the string. For
output, you will often not need to initialize the string. For input/output situations, whether
you initialize the string depends on your application.

The istringstream constructor used by this recipe is shown here:

explicit istringstream(const string &buf, ios::openmode mode = ios::in)

It creates a char-based input stream based on a string. It initializes that string with the
contents of buf. Therefore, read operations will obtain the characters passed via buf.
The ostringstream constructor used by this recipe is shown here:

explicit ostringstream(ios::openmode mode = ios::out)

It creates a char-based output stream based on a string. All write operations will put
characters into a string maintained by ostringstream.
The stringstream constructor used by this recipe is shown here:

explicit stringstream(ios::openmode mode = ios::in | ios::out)

It creates a char-based string stream capable of input and output. The buffer is not initialized.
When switching between reading and writing, you must usually perform a seek or flush
operation. (See Read from and Write to a File.)

You can obtain the current contents of the string by calling this version of str():

string str() const

It returns a copy of the contents of the current string buffer.

One other point: It is not necessary to close a string stream. In fact, the string stream
classes do not define either an open() or close() function. This is because the string stream
classes do not operate on external devices. They simply treat a string as the source of input
or the destination of output for the stream. This is also why it is not necessary to confirm
that a string stream was successfully created before using it.

Example
The following example shows the string stream classes in action.

// Use a string stream.

#include <iostream>
#include <sstream>

using namespace std;
int main ()

{

char ch;

Chapter 5: Working with 1/0

// Create an output string stream.
ostringstream strout;

cout << "Use an output string stream called strout.\n";

// Write output to the string stream..

strout << 10 << " " << -20 << " " << 30.2 << "\n";

strout << "This is a test.";

// Now, obtain a copy of the current contents of the stream buffer
// and use it to display the contents of the buffer.

cout << "The current contents of strout as obtained from str () :\n"

<< strout.str() << endl;

// Write some more to strout.
strout << "\nThis is some more output.\n";

cout << endl;
cout << "Use an input string stream called strin.\n";

// Now, use the contents of strout to create strin:
istringstream strin(strout.str());

// Display the contents of strin via calls to get().

cout << "Here are the current contents of strin via get () :\n";
do {

ch = strin.get () ;

if (!strin.eof ()) cout << ch;

} while(!strin.eof());

cout << endl;

// Now create string stream for input/output.

cout << "Now, use an input/output string stream called strinout.\n";
stringstream strinout;

// Write some output to strinout.
strinout << 10 << " 4+ " << 12 << " is " << 10412 << endl;

// Now, display the contents of strinout via get().

cout << "Here are the current contents of strinout via get():\n";
do {

ch = strinout.get () ;

if (!strinout.eof ()) cout << ch;

} while(!strinout.eof ());
cout << endl;

// Clear eofbit on strinout.
strinout.clear() ;

339

340

Herb Schildt's C++ Programming Cookbook

strinout << "More output to strinout.\n";

// The following will continue reading from the point
// at which the previous reads stopped.
cout << "Here are the characters just added to strinout:\n";

do {
ch = strinout.get () ;
if (!strinout.eof ()) cout << ch;

} while(!strinout.eof());

}
The output is shown here:

Use an output string stream called strout.

The current contents of strout as obtained from str():
10 -20 30.2

This is a test.

Use an input string stream called strin.

Here are the current contents of strin via get():
10 -20 30.2

This is a test.

This is some more output.

Now, use an input/output string stream called strinout.
Here are the current contents of strinout via get():
10 + 12 is 22

Here are the characters just added to strinout:
More output to strinout.

Options and Alternatives

When creating an ostringstream instance, it is possible to initialize the buffer with a character
sequence by using this version of its constructor:

explicit ostringstream(const string &buf, ios::openmode mode = ios::out)

Here, the contents of buf will be copied into the output buffer.

When creating an istringstream instance, it is not necessary to initialize the input buffer
with a character sequence. (You can set the contents of the string stream buffer after the fact
by calling a second form of str(), shown shortly.) Here is the version of the istringstream
that does not initialize the input buffer:

explicit istringstream(ios::openmode mode = ios::in)

Notice that only the mode is specified, and it defaults to input.
For stringstream, you can initialize the buffer with a known character sequence by
using this form of its constructor:

explicit stringstream(const string buf, ios::openmode mode = ios::in | ios::out)

The contents of buf are copied into the buffer associated with the stringstream object.

Chapter 5: Working with 1/0

For all three string stream classes, you can set the contents of the buffer by calling this
form of str():

void str(const string &buf)

It reinitializes the buffer with the contents of buf.

'

Create Custom Inserters and Extractors

I Key Ingredients
Headers Classes Functions
<ostream> ostream ostream &operator<<(ostream &stream,
const class_type &obj)
<istream> istream istream &operator>>(istream &stream,
class_type &obj)

In the language of C++, the << output operator is referred to as the insertion operator because
it inserts characters into a stream. Likewise, the >> input operator is called the extraction
operator because it extracts characters from a stream. The operator functions that overload
the insertion and extraction operators are generally called inserters and extractors,
respectively. The C++ I/0O classes overload the inserter and extractor operators for all of the
built-in types. However, it is also possible to create your own overloaded versions of these
operators for class types that you create. This recipe shows the procedure.

Step-by-Step
To overload an inserter for class objects involves these steps:
1. Overload the << operator so that it takes a reference to an ostream in its first
parameter and a const reference to the object to output in the second parameter.
2. Implement the inserter so that it outputs the object in the manner that you desire.
3. Have the inserter return the stream reference.
4. Typically, you will make the inserter a friend of the class on which it is operating so
that it has access to the private members of the class.
To overload an extractor for class objects involves these steps:
1. Overload the >> operator so that it takes a reference to an istream in its first
parameter and a reference to the object receiving input in the second parameter.

2. Implement the extractor so that it reads the input stream and stores the data in an
object of the class.

|

342

Herb Schildt's C++ Programming Cookbook

3. Have the extractor return the stream reference.

4. Typically, you will make the extractor a friend of the class on which it is operating
so that it has access to the private members of the class.

Discussion
It is quite simple to create an inserter for a class that you create. Here is a typical general
form for an inserter:

ostream &operator<<(ostream &stream, const class_type &obyj)
{

// body of inserter

return stream;

)

Notice that the function returns a reference to a stream of type ostream. Further, the first
parameter to the function is a reference to the output stream. The second parameter is a
const reference to the object being inserted. Technically, the second parameter can receive a
copy of the object (that is, it can be a value parameter), and it need not be const. However,
most often when an object is output, it is not altered, and passing by reference is usually
faster than passing by value. Therefore, usually, the second parameter is a const reference to
the object. Of course, this is governed by the specific situation. In all cases, the inserter must
return stream. This allows the inserter to be used in a larger I/O expression.

Within an inserter function, you may put any type of procedures or operations that you
want. That is, precisely how the inserter outputs the object is completely up to you. In all
cases, though, for the inserter to be in keeping with good programming practices, it should
not produce side effects. Therefore, it should not modify the object. It should also not
perform operations that are unrelated to insertion. For example, having an inserter recycle
unused memory as a side effect to an insertion operation is probably not a very good idea!

Extractors are the complement of inserters. They store input in an object. The general
form of an extractor function is:

istream &operator>>(istream &stream, class_type &obj)
{

// body of extractor

return stream;

}

Extractors return a reference to a stream of type istream, which is an input stream. The first
parameter must also be a reference to a stream of type istream. Notice that the second
parameter must be a reference to an object of the class for which the extractor is overloaded.
This is so the object can be modified by the input (extraction) operation.

Like inserters, an extractor should confine its operation to reading data from the input
stream and storing it in the specified object. It should not generate side effects. Nor should it
read more input than that needed by the object. For example, an extractor should not
normally read a trailing space.

In many cases, you will want to make the inserter or extractor a friend of the class for
which it is overloaded. Doing so grants it access to the private members of the class. This might

Chapter 5: Working with 1/0 343

be required to obtain data for output or to store data from input. Of course, this may not be
possible if you are creating an inserter or extractor for a class to which you do not have the
source code, such as a third-party class.

Example

The following shows examples of a custom inserter and extractor. It creates a class called
ThreeD, which stores three-dimensional coordinates. It uses a custom inserter to output the
coordinates. It uses a custom extractor to read the coordinates.

// Demonstrate a custom inserter and extractor for objects
// of type ThreeD.

#include <iostream>
using namespace std;

class ThreeD
int x, vy, z; // 3-D coordinates
public:
ThreeD(int a, int b, int ¢) { x = a; y = b; z = ¢; }

// Make the inserter and extractor friends of ThreeD.
friend ostream &operator<< (ostream &stream, const ThreeD &obj) ;
friend istream &operator>>(istream &stream, ThreeD &obj) ;

//
Vi

// ThreeD inserter. Display the X, Y, Z coordinates.
ostream &operator<< (ostream &stream, const ThreeD &obj)
{

stream << obj.x << ", ";

stream << obj.y << ", ";

stream << obj.z << "\n";

return stream; // return the stream

}

// ThreeD extractor. Get three-dimensional values.
istream &operator>>(istream &stream, ThreeD &obj)

{

stream >> obj.x >> obj.y >> obj.z;
return stream;

}

int main()

{
ThreeD td (1, 2, 3);

cout << "The coordinates in td: " << td << endl;

cout << "Enter new three-d coordinates: ";
cin >> td;

344 Herb Schildt's C++ Programming Cookbook

cout << "The coordinates in td are now: " << td << endl;

return O;

A sample run is shown here:
The coordinates in td: 1, 2, 3

Enter new three-d coordinates: 9 8 7
The coordinates in td are now: 9, 8, 7

Options and Alternatives

As mentioned, when creating an inserter, it's not technically necessary to pass the object
being output by reference. In some cases, you might want to use a value parameter instead.
This might make sense when operating on very small objects in which the amount of time it
takes to push the object on the stack (which is what happens when an argument is passed
by value) is less than the amount of time it takes to push the address of the object (which is
what happens when an object is passed by reference).

'

Create a Parameterless Manipulator

I Key Ingredients
Headers Classes Functions
<istream> istream istream &manip-name(istream &strm)
<ostream> ostream ostream &manip-name(ostream &strm)

I/0 manipulators are functions that are embedded within an I/O expression. They either
affect the underlying stream, such as by changing its format flags, or they insert characters
into or extract characters from the stream. Because they operate within an I/O expression,
manipulators streamline the coding of many tasks. C++ supplies many built-in manipulators,
and they are described in Chapter 6, where recipes related to formatting data are presented.
It is, however, also possible to create your own custom manipulators.

Typically, a custom manipulator is used to consolidate a sequence of separate I/O
operations into a single step. For example, it is not uncommon to have situations in which
the same sequence of I/O operations occurs frequently within a program. In these cases, you
can use a custom manipulator to perform these actions, thus simplifying your source code
and preventing errors. Here is another example: You may need to perform I/O operations on
a nonstandard device. For example, you might use a manipulator to send control codes to a
special type of printer or to an optical recognition system. A custom manipulator can

Chapter 5: Working with 1/0 345

simplify this process by allowing you to send the codes by name. Whatever the purposes,
custom manipulators are popular extensions to the C++1/O system.

There are two basic types of manipulators: those that operate on input streams and
those that operate on output streams. In addition to these two broad categories, there is a
secondary division: those manipulators that take an argument and those that don't. The
techniques used to create parameterless manipulators differ from those used to create
parameterized manipulators. This recipe shows how to create parameterless custom
manipulators. The following recipe shows one way to create parameterized manipulators.

Step-by-Step

To create your own parameterless output manipulator involves these steps:

1. Create a function that takes a reference to an ostream object as a parameter and
returns a reference to an ostream.

2. Inside that function, perform actions on the ostream passed as an argument.

3. Return a reference to the ostream argument.
To create your own parameterless input manipulator involves these steps:

1. Create a function that takes a reference to an istream object as a parameter and
returns a reference to an istream.

2. Inside that function, perform actions on the istream passed as an argument.

3. Return a reference to the istream argument.

Discussion
All parameterless output manipulator functions have this skeleton:

ostream &manip-name(ostream &strear)
{

// your code here

return stream;

}

Here, manip-name is the name of the manipulator and stream is a reference to the output stream

on which the manipulator will operate. Notice that stream is also returned. This is necessary to

allow the manipulator to be used as part of a larger I/O expression. It is important to note that

even though the manipulator has as its single argument a reference to the stream upon which

it is operating, no argument is used when the manipulator is inserted in an output operation.
All parameterless input manipulators have this skeleton:

istream &manip-name(istream &stream)

{
// your code here
return stream,

}

346

Herb Schildt's C++ Programming Cookbook

An input manipulator receives a reference to the stream for which it was invoked. This
stream must be returned by the manipulator. Even though the manipulator takes an istream
argument, no arguments are passed when the manipulator is invoked.

Once you have defined a manipulator, you can use it by simply specifying its name in
an insertion or extraction expression. The reason this works is that the >> and << operators
are overloaded to accept a function pointer that has a stream reference as its only parameter.
The overloaded << and >> operators are implemented such that they call the function,
through the pointer, passing in a reference to the stream. This process lets your custom
manipulator receive a reference to the stream that it will be affecting.

It is important to understand that (except in highly unusual cases) your manipulator
must operate on the stream passed to it. A common mistake that beginners make is to
hardcode a reference to a stream, such as cout, rather than use the stream passed to the
parameter. The trouble is that your manipulator will work correctly in some cases and fail
in others. Although such an error is usually easy to find and correct, it can occasionally be
daunting, depending on what stream you hardcoded. The rule is easy: A manipulator must
operate on the stream that it is passed.

Example

The following example shows both an input and an output custom manipulator. The output
manipulator is called star_fill(). It specifies the asterisk (*) as the fill character and sets the
field width to 10. Therefore, after a call to star_fill(), the number 1234 is displayed as
*a4xx%1234. (For information on formatting data, see Chapter 6.) The input manipulator is
called skip_digits(). It skips leading digits in the input stream. Therefore, if the input
stream contains 9786ABC0101, then skip_digits() reads and discards the leading 9786,
leaving ABC0101 in the input stream.

// Demonstrate a custom output manipulator called star fill() and
// a custom input manipulator called skip digits().

#include <iostream>
#include <iomanips>
#include <string>
#include <cctypes>

using namespace std;

// A simple output manipulator that sets the f£ill character
// to * and sets the field width to 10.

ostream &star fill (ostream &stream) {

stream << setfill('*') << setw(10);

return stream;

}

// A simple input manipulator that skips leading digits.
istream &skip digits(istream &stream) {
char ch;

do {
ch = stream.get () ;

Chapter 5: Working with 1/0

} while(!stream.eof () && isdigit(ch));
if (!stream.eof ()) stream.unget () ;

return stream;

}

int main/()

{

string str;

// Demonstrate the custom output manipulator.
cout << 512 << endl;
cout << star fill << 512 << endl;

// Demonstrate the custom input manipulator.
cout << "Enter some characters: ";

cin >> skip digits >> str;

cout << "Contents of str: " << str;

return 0O;

}

Here is a sample run:

512

*kk*kkk*k5] D

Enter some characters: 123ABC
Contents of str: ABC

Options and Alternatives

If you have correctly coded your custom manipulator so that it operates on the stream that
it was passed, then it can be used on any type of stream. For example, in the preceding
program, you can use star_fill() on a file stream or a string stream. To confirm this, add the

following sequence to the program. It uses star_fill() on an ostringstream and an ofstream.

// Use star fill() on a stringstream.
ostringstream ostrstrm;

ostrstrm << star fill << 29;

cout << ostrstrm.str () ;

// Use star fill on an ofstream.
ofstream fout ("test.dat") ;
if (1fout) {
cout << "Error opening file.\n";
return 1;

}

fout << star fill << 19;

After recompiling, you will see that star_£ill() works correctly on both ostrstrm and fout.
You can also create parameterized manipulators. The process is the subject of the
next recipe.

347

348 Herb Schildt's C++ Programming Cookbook

”~

~ Create a Parameterized Manipulator

I Key Ingredients
Headers Classes Functions and Fields
<istream> istream istream &operator>>(istream &stream,
manip-class mc)
<ostream> ostream ostream &operator<<(ostream &stream,
manip-class mc)
manip-class user-defined

As the previous recipe shows, it is very easy to create a parameterless manipulator. The
reason is that << or >> are overloaded for (among many other things) a function pointer. As
explained in the preceding recipe, when a parameterless manipulator is used, a pointer to it
is passed to the overloaded inserter or extractor and the function is called, with the stream
being passed as an argument. Unfortunately, this simple mechanism will not work for a
manipulator that requires an argument because there is no way to pass the argument via the
function pointer. As a result, the creation of a parameterized manipulator relies on a
fundamentally different mechanism, which is a bit more complicated. Furthermore, there
are various ways to implement a parameterized manipulator. This recipe shows one
relatively easy, straightforward way.

Step-by-Step

To create a parameterized output manipulator involves these steps:

1. Create a class whose name is the name of the manipulator. For example, if the name
of the manipulator is mymanip, then the name of the class is mymanip.

2. Create a private field in the class that will hold the argument passed to the
manipulator. The type of the field must be the same as the type of data that will be
passed to the manipulator.

3. Create a constructor for the class that has one parameter, which is the same type as
the type of the data that will be passed to the manipulator. Have the constructor
initialize the value of the field from Step 2 with the value passed to the constructor.

4. Create an overloaded inserter that takes an ostream reference as its first argument
and an object of the class from Step 1 as its second argument. Inside this function,
perform the manipulator's actions. Return a reference to the stream.

5. Make the overloaded inserter a friend of the class from Step 1.

6. To use the manipulator, use the class' constructor in the output expression, passing
in the desired argument. This will cause an object to be constructed, and then the
overloaded inserter will be called, using that object as the right-hand operand.

Chapter 5: Working with 1/0

To create a parameterized input manipulator involves these steps:

1. Create a class whose name is the name of the manipulator. For example, if the name
of the manipulator is mymanip, then the name of the class is mymanip.

2. Create a private field in the class that will hold the argument passed to the
manipulator. The type of the field must be the same as the type of data that will be
passed to the manipulator.

3. Create a constructor for the class that has one parameter, which is the same type as
the type of the data that will be passed to the manipulator. Have the constructor
initialize the value of the field from Step 2 with the value passed to the constructor.

4. Create an overloaded extractor that takes an istream reference as its first argument
and an object of the class from Step 1 as its second argument. Inside this function,
perform the manipulator's actions. Return a reference to the stream.

5. Make the overloaded extractor a friend of the class from Step 1.

6. To use the manipulator, use the class' constructor in the input expression, passing in
the desired argument. This will cause an object to be constructed, and then the
overloaded extractor will be called, using that object as the right-hand operand.

Discussion

In general, creating a parameterized manipulator involves two items. The first is a class that
stores the argument passed to the manipulator. The second is an inserter or extractor that is
overloaded to take an object of that class as the right-hand operand. When the manipulator
is included in an I/O expression, an object of the class is constructed, with the argument
being saved. The inserter or extractor then operates on that object and is able to access the
argument.

Let's work through this step by step, creating a simple parameterized inserter called
indent, which indents output by a specified number of spaces. For example, the expression

cout << indent (10) << "Hi";

will cause ten spaces to be output, followed by the string "Hi". As explained, all parameterized
manipulators need two items. The first is a class that stores the argument passed to the
manipulator. Therefore, to create the indent manipulator, begin by creating a class called
indent that stores the argument passed to its constructor and specifies an overloaded inserter
as a friend, as shown here:

// A class that supports the indent output manipulator.
class indent

int len;
public:

indent (int i) { len = i; }

friend ostream &operator<< (ostream &stream, indent ndt) ;

i

As you can see, the constructor takes one argument, which it stores in the private field len.
This is the only functionality that indent provides. It simply stores the argument. It does,

349

350

Herb Schildt's C++ Programming Cookbook

however, declare operator<<() to be a friend. This gives the operator function access to the
private len field.

The second item you need to create is an overloaded inserter that takes an indent
instance as a right-hand operand. (See Create Custom Inserters and Extractors for details on
creating an inserter or extractor.) Have this operator output the number of spaces specified
by the len field of the object on which it is operating. Here is one way to implement this
function:

// Create an inserter for objects of type indent.
ostream &operator<< (ostream &stream, indent ndt) {

for(int i1i=0; i < ndt.len; ++i) stream << " ";

return stream;

}

As you can see, this operator takes an ostream reference as its left-hand operand and an
indent object as its right-hand operand. It outputs the number of spaces specified by the
indent object and then returns the stream. Because operator<<() is a friend of indent, it can
access the len field, even though it is private.

When indent is used within an output expression, it causes an object of type indent to
be created with the specified argument. Then, the overloaded operator<<() function is
invoked, passing in the stream and the newly created indent object.

Example

The following example shows both a parameterized input and a parameterized output
manipulator. The input manipulator is called skipchar, and on input, it skips leading
characters that match the one passed to skipchar. For example, skipchar('X") skips leading
X's. The output manipulator is indent, described in the Discussion section for this recipe.

// Create simple parameterized input and output manipulators.

!/

// The indent manipulator outputs a specified number of spaces.
// The skipchar manipulator skips a specified character on input.

#include <iostream>
#include <string>
#include <sstreams>

using namespace std;

// Together, the following class and overloaded operator create
// the indent manipulator.

// A class that supports the indent output manipulator.
class indent

int len;
public:

indent (int i) { len = i; }

friend ostream &operator<< (ostream &stream, indent ndt) ;

i

Chapter 5: Working with 1/0

// Create an inserter for objects of type indent.
ostream &operator<< (ostream &stream, indent ndt) {

for(int i=0; i < ndt.len; ++i) stream << " ";

return stream;

}

// Together, the following class and overloaded operator create
// the skipchar manipulator.

// A class that supports the skipchar input manipulator.
class skipchar {

char ch;
public:

skipchar (char c¢) { ch = ¢; }

friend istream &operator>>(istream &stream, skipchar sc);

Vi

// Create an extractor for objects of type skipchar.
istream &operators>(istream &stream, skipchar sc)
char ch;

do {

ch = stream.get () ;
} while(!stream.eof () && ch == sc.ch);
if (!stream.eof ()) stream.unget () ;

return stream;

}

// Demonstrate indent and skipchar.
int main() {
string str;

// Use indent to indent output.

cout << indent (9) << "This is indented 9 places.\n"
<< indent (9) << "So is this.\n" << indent (18)
<< "But this is indented 18 places.\n\n";

// Use skipchar to ignore leading zeros.

cout << "Enter some characters: ";

cin >> skipchar('0') >> str;

cout << "Leading zeros are skipped. Contents of str: "
<< str << "\n\n";

// Use indent on an ostringstream.

cout << "Use indent with a string stream.\n";

ostringstream ostrstrm;

ostrstrm << indent (5) << 128;

cout << "Contents of ostrstrm:\n" << ostrstrm.str() << endl;

return O;

351

352

e

Obtain or Set a Stream's Locale

Herb Schildt's C++ Programming Cookbook

A sample run is shown here:

This is indented 9 places.
So is this.
But this is indented 18 places.

Enter some characters: 000abc
Leading zeros are skipped. Contents of str: abc

Use indent with a string stream.
Contents of ostrstrm:
128

Options and Alternatives

This recipe shows an easy way to create parameterized manipulators, but it is not the only
way. In the header <iomanip> are defined the parameterized manipulators specified by
Standard C++. If you examine this header, you will probably see a more sophisticated
approach, which utilizes templates and possibly complex macros. You could use the
approach shown in that header to create your own parameterized manipulators that
integrate with the class types defined by that header. However, because the classes in
<iomanip> are implementation-specific, they may (probably will) differ between
compilers. The approach used by the recipe is portable. Also, typically, the mechanism
used by <iomanip> is fairly complicated and can be difficult to understand without
significant study. Often, it is simply easier to use the technique shown in this recipe.
Frankly, it is the approach that I like.

Key Ingredients

Headers Classes Functions

<ios> ios_base locale getloc() const

<ios> ios locale imbue(const locale &newloc)
<locale> locale string name() const

You can obtain or set the locale object associated with a stream. In C++, locale-specific
information is encapsulated within a locale object. This object defines various locale-related
items, such as the currency symbol, the thousands separator, and so on. Each stream has a
locale associated with it. To aid in internationalization, you may want to obtain a stream's
locale object or set it to a new one. This recipe shows the process.

Chapter 5: Working with 1/0 353

Step-by-Step

To obtain the current locale object associated with a stream involves these steps:

1. Create a locale instance that will receive a copy of the current locale.

2. Call getloc() on the stream to obtain a copy of the current locale.
To set the locale associated with a stream involves these steps:

1. Create a locale instance that encapsulates the desired locale.

2. Call imbue() on the stream, passing in the locale object from Step 1.

Discussion

The locale class encapsulates geopolitical information about a program's execution
environment. For example, a program's locale determines the currency symbol, the time
format, and the date format, among many others. The locale class requires the header
<locale>. Each stream has a locale object associated with it.

To obtain a stream's current locale, call getloc() on the stream. It is shown here:

locale getloc() const

It returns the locale object associated with the stream.
To set a stream's locale, call imbue() on the stream. It is shown here:

locale imbue(const locale &newloc)

The invoking stream's locale is set to newloc, and the old locale is returned.
An easy way to construct a locale instance is to use this locale constructor:

explicit locale(const char *name)

Here, name specifies the name of the locale, such as german, spanish_spain, or US. If name
does not represent a valid locale, then a runtime_error exception is thrown.
Given a locale instance, you can obtain its name by calling name(). It is shown here:

string name() const

The human-readable name of the locale is returned.

Example

The following example shows how to obtain and set a stream's locale. It first displays the
stream's current locale, which is typically the C locale (which is usually the default locale for
a C++ program). It then sets the locale to German_Germany. Finally, it obtains and displays
the money symbol and the character used for the thousands separator.

// Demonstrate getloc() and imbue() on a stream.
#include <iostream>

#include <fstreams>
#include <locale>

354 Herb Schildt's C++ Programming Cookbook

using namespace std;

int main ()

{

ofstream fout ("test.dat") ;

if (1fout) {
cout << "Cannot open file.\n";
return 1;

}

// Display the name of the current locale.
cout << "The original locale is " << fout.getloc() .name() ;
cout << "\n\n";

cout << "Setting the locale to German Germany.\n";

// Create a locale object for Germany.
locale loc("German_ Germany") ;

// Set fout's locale to loc.
fout.imbue (loc) ;

// Display the name of the new locale.
cout << "The current locale is now " << fout.getloc() .name() ;
cout << endl;

// First, confirm that moneypunct facet is available.
if (has_facet<moneypunct<char, true> >(fout.getloc())) {
// Obtain the moneypunct facet.
const moneypunct<char, true> &mp =
use_ facet<moneypunct<char, true> >(fout.getloc());

// Display the currency symbol and thousands separator.
cout << "Money symbol: " << mp.curr symbol() << endl;
cout << "Thousands separator: " << mp.thousands sep() << endl;

}

fout.close() ;

if (1fout.good()) {
cout << "Error closing file.\n";
return 1;

}

return 0;

}
The output is shown here:
The original locale is C

Setting the locale to German Germany.

Chapter 5: Working with 1/0 359

The current locale is now German Germany.1252
Money symbol: EUR
Thousands separator:

Options and Alternatives

As mentioned, at the core of internationalization is the locale class. It encapsulates a set of
facets that describe the geopolitical aspects of the execution environment. The facets are
represented by classes declared within <locale>, such as moneypunct used in the example.
Others include numpunct, num_get, num_put, time_get, and time_put. You can use these
classes to read and write information that is formatted relative to a specific locale. See
Chapter 6 for recipes related to formatting data.

~ Use the C-Based File System

I Key Ingredients

Headers Classes Functions

<cstdio> int fclose(FILE *fp)
int feof(FILE *fp)
int ferror(FILE*fp)

FILE *fopen(const char *fname,
const char *mode)

int fgetc(FILE *fp)
int fputc(int ch, FILE *fp)

The preceding recipes have described how to perform a wide variety of file-handling tasks
by using the C++ I/O system, which is based on the hierarchy of classes described in the
overview at the start of this chapter. This is the I/O system that you will normally use when
writing C++ code. That said, no C++ cookbook would be complete without at least one
recipe that describes the basics of using C++'s "other I/O system," which is the one
inherited from C.

As nearly all C++ programmers know, C++ was built on the C language. As a result,
C++ includes the entire C language. This is why the for loop in C, for example, works just
like it does in C++. It is also why C-based functions, such as tolower(), are readily available
for use in a C++ program. This is important because C defines a complete I/O system of its
own, which is separate from the one defined by C++. You have probably already seen
C-based I/O in action in third-party code. For example, the main console output function is
printf() and a commonly used input function is scanf(). In fact, variants of these functions
are used in some of the recipes in Chapter 6, where formatting data is described.

Because the C file system is fully supported by C++, you will occasionally see it used
in C++ programs. Perhaps more importantly, much legacy C code is still in widespread use.

356

Herb Schildt's C++ Programming Cookbook

If you will be maintaining such code, or possibly upgrading it to the C++ I/O system, then
a basic working knowledge of the C file system is a necessity. Finally, in my opinion, no one
can really call themselves a C++ programmer without having at least passing knowledge of
the C language subset, including its approach to I/O.

This recipe demonstrates the basic mechanism required to open, close, read, and write
a file. It also shows how to detect errors. Although there is much more to C-based file I/O
than can be presented in one recipe, it will give you a general understanding of the key
elements.

Step-by-Step
To use the C I/O system to read or write a file involves these steps:

1. Open a file by calling fopen().

N

. Confirm that the file is open by testing the value returned by fopen(). If it is NULL,
the file is not open.

. If the file is opened for input, read characters by calling fgetc().

. If the file is opened for output, write characters by calling fputc().
. Close the file by calling fclose().

. Check for errors by calling ferror().

. Check for end-of-file by calling feof().

N O O - W

Discussion

Although the C file system utilizes the same high-level concept of the stream, the way it
works differs substantially from the C++ file system. A key difference is that the CI/O
functions operate through file pointers, rather than on objects of classes that encapsulate a file.
(As will be explained, the file pointer represents a file.) Therefore, the C file system centers not
on a class hierarchy, but around the file pointer.

A file pointer is obtained by opening a file. Once you have a file pointer, you can operate
on it through one or more of the C I/O functions. The ones used by this recipe are shown
here: All require the header <cstdio>. This is the C++ version of the original stdio.h header
file used by C.

Name Function

fopen() Opens a file.

fclose() Closes a file.

fpute() Writes a character to a file.

fgete() Reads a character from the file.

feof() Returns true if end-of-file is reached.
ferror() Returns true if an error has occurred.

Chapter 5: Working with 1/0 357

The <cstdio> header provides the prototypes for the I/O functions and defines these
three types: size_t, fpos_t, and FILE. The size_t type is some variety of unsigned integer, as
is fpos_t. The FILE type describes a file. It merits closer examination.

The file pointer is the common thread that unites the CI/O system. It is a pointer to a
structure of type FILE. This structure contains information that defines various things about
the file, including its name, status, and the current position of the file. In essence, the file
pointer identifies a specific file and is used by the associated stream to direct the operation
of the I/O functions. In order to read or write files, your program needs to use file pointers.
To obtain a file pointer variable, use a statement like this:

FILE *fp;

Also defined in <cstdio> are several macros. The ones relevant to this recipe are NULL
and EOF. The NULL macro defines a null pointer. The EOF macro is usually defined as -1
and is the value returned when an input function tries to read past the end of the file.

An overview of each C I/O function used by this recipe follows.

fopen()

The fopen() function opens a stream for use and links a file with that stream. Then it returns
the file pointer associated with that file. Most often (and for the rest of this discussion) the
file is a disk file. The fopen() function has this prototype:

FILE *fopen(const char *fname, const char *mode)

where fname is a pointer to a string of characters that make up a valid file name and may
include a path specification. The string pointed to by mode determines how the file will be
opened. The following table shows the legal values for mode. (Strings like "r+b" may also be
represented as "rb+.")

Mode Meaning

r Open a text file for reading.

w Create a text file for writing.

a Append to a text file.

rb Open a binary file for reading.

wb Create a binary file for writing.

ab Append to a binary file.

r+ Open a text file for read/write.

w+ Create a text file for read/write.

a+ Append or create a text file for read/write.
r+b Open a binary file for read/write.

w+b Create a binary file for read/write.

a+b Append or create a binary file for read/write.

358

Herb Schildt's C++ Programming Cookbook

Notice that a file can be opened in either text or binary mode. In most implementations,
in text mode, carriage return/linefeed sequences are translated to newline characters on
input. On output, the reverse occurs: Newlines are translated to carriage return/linefeeds.
No such translations occur on binary files.

As stated, fopen() function returns a file pointer. Your program should never alter the
value of this pointer. If an error occurs when it is trying to open the file, fopen() returns a
null pointer. You must confirm that the file was successfully opened by testing the value
returned by fopen(). Here is an example of how to open a file when using fopen(). It
attempts to open a file called test.dat for output.

FILE *fp;

if ((fp = fopen("test.dat","w"))==NULL) {
cout << "Cannot open test.dat for output.\n";
exit (1) ;

}

If the file cannot be opened for any reason, such as if it is read-only, then the call to fopen()
will fail and a null pointer will be returned. Of course, the test for an open failure can be
written a bit more compactly, like this:

if (! (fp = fopen("test.dat","w"))) { // ...
The explicit test against NULL is not needed because a null pointer is a false value.

fclose()
The fclose() function closes a stream that was opened by a call to fopen(). It writes any
data still remaining in the disk buffer to the file and does a formal operating-system-level
close on the file. Failure to close a stream invites trouble, including lost data, destroyed files,
and possible intermittent errors in your program. Therefore, you should always close a file
when you are done with it. Closing a file also frees any system resources used by the file,
making them available for reuse.

The fclose() function has this prototype:

int fclose(FILE *fp)

where fp is the file pointer returned by the call to fopen(). A return value of zero signifies
a successful close operation. The function returns EOF if an error occurs. A call to fclose()
will fail when a disk has been prematurely removed from the drive or there is no more
space on the disk, for example.

fpute()

The fputc() function writes characters to a file. It is shown here:
int fpute(int ch, FILE *fp)

The fp parameter specifies the file to write to, and ch is the character to write. Although ch is
defined as an int, only the low-order byte is written. If fputc() is successful, it returns ch.
Otherwise, it returns EOF.

Chapter 5: Working with 1/0 359

fgetc()

The fgetc() function reads characters from a file. It is shown here:
int fgetc(FILE *fp)

The fp parameter specifies the file to read from. It returns the next character in the file,
returned as an int value. It returns an EOF when the end of the file has been reached.
Therefore, to read to the end of a text file, you could use the following code:

do {
ch = fgetc(fp);
} while(ch != EOF) ;

However, fgetc() also returns EOF if an error occurs. You can use ferror() to determine
precisely what has occurred.

feof()

As just described, fgetc() returns EOF when the end of the file has been encountered.
However, testing the value returned by fgetc() may not be the best way to determine when
you have arrived at the end of a file. First, the C file system can operate on both text and
binary files. When a file is opened for binary input, an integer value that will test equal to
EOF may be read. This would cause the input routine to indicate an end-of-file condition
even though the physical end of the file had not been reached. Second, fgetc() returns EOF
when it fails and when it reaches the end of the file. Using only the return value of fgetc(), it
is impossible to know which occurred. To solve these problems, C includes the function
feof(), which determines when the end of the file has been encountered. The feof()
function is shown here:

int feof(FILE *fp)

It returns true if the end of the file has been reached; otherwise, it returns false. Therefore,
the following statement reads a binary file until the end of the file is encountered:

while (!feof (fp)) ch = fgetc(fp);
Of course, you can apply this method to text files as well as binary files.

ferror()
The ferror() function determines whether a file operation has produced an error. The
ferror() function is shown here:

int ferror(FILE *fp)

The fp parameter specifies the file in question. The function returns true if an error has
occurred during the last file operation; otherwise, it returns false.

Example

The following program illustrates the C-based file I/O. It copies a text file. In the process, it
removes tabs and substitutes the appropriate number of spaces. To use the program, specify
the name of the input file, the name of the output file, and the tab size on the command line.

360 Herb Schildt's C++ Programming Cookbook

// Demonstrate C-based file I/O.

//

// This program copies a file, substituting spaces for
// tabs in the process. It uses the C I/0O system to

// handle the file I/0.

#include <iostream>
#include <cstdio>
#include <cstdlibs>

using namespace std;

int main(int argc, char *argvl[])
FILE *in, *out;
int tabsize;
int tabcount;

char ch;

int completion status = 0;

if (argc != 4)
cout << "usage: detab <in> <out> <tab size>\n";
return 1;

1

if ((in = fopen(argv[l], "rb"))==NULL) {
cout << "Cannot open input file.\n";
return 1;

1

if ((out = fopen(argv[2], "wb"))==NULL) ({

cout << "Cannot open output file.\n";
fclose (in) ;
return 1;

}

// Get the tab size.
tabsize = atoi(argvI[3]);

tabcount = 0;

do {
// Read a character from the input file.
ch = fgetc(in);

if (ferror (in))
cout << "Error reading input file.\n";
completion status = 1;
break;

}

// If tab found, output appropriate number of spaces.
if(ch == "\t") {
for (int i=tabcount; i < tabsize; ++i) {
// Write spaces to the output file.

Chapter 5: Working with 1/0 361

fputc (' ', out);

}

tabcount = 0;

}

else {
// Write the character to the output file.
fputc(ch, out);

++tabcount;
if (tabcount == tabsize) tabcount = 0;
if(ch == '\n' || ch == '\r') tabcount = 0;

}

if (ferror (out))
cout << "Error writing to output file.\n";
completion status = 1;
break;

}

} while(!feof (in)) ;

fclose (in) ;
fclose (out) ;

if (ferror (in) || ferror(out)) {
cout << "Error closing a file.\n";
completion_ status = 1;

}

return completion status;

}

Options and Alternatives
You can read and write blocks of data using the C I/O system by using the functions fread()
and fwrite(). They are shown here:

size_t fread(void *buf, size_t num_bytes, size_t count, FILE *fp)
size_t fwrite(const void *buf, size_t num_bytes, size_t count, FILE *fp)

For fread(), buf is a pointer to a region of memory that will receive the data from the file.
For fwrite(), buf is a pointer to the information that will be written to the file. The value of
count determines how many items are read or written, with each item being num_bytes bytes
in length. The file acted upon is specified by fp. The fread() function returns the number of
items read. This value may be less than count if the end of the file is reached or an error
occurs. The fwrite() function returns the number of items written. This value will equal
count unless an error occurs.

There are alternative versions of fgetc() and fputc() called getc() and putc(). They
work just like fgetc() and fputc(), except that they can be implemented as macros.

You can perform random-access operations using the C I/O system with fseek(). It is
shown here:

int fseek(FILE *fp, long offset, int origin)

362

Herb Schildt's C++ Programming Cookbook

The file acted upon is specified by fp. The number of bytes from origin that will become the
new current position is passed in offset. The value of origin must be one of the following
values (defined in <cstdio>):

Origin Macro Name
Beginning of file SEEK_SET
Current position SEEK_CUR
End of file SEEK_END

Therefore, to seek from the start of the file, origin should be SEEK_SET. To seek from the
current position, use SEEK_CUR, and to seek from the end of the file, use SEEK_END.
The fseek() function returns zero when successful and a non-zero value if an error
occurs.

The CI/0 system supports several functions that support formatted I/O. You have
probably seen some of them before. The two most commonly encountered are printf(),
which outputs formatted data to the console, and scanf(), which reads formatted data
from the console. There are also variations of these, called fprintf() and fscanf(), which
operate on a file, and sprintf() and sscanf(), which use a string for input or output.
Chapter 6, which presents recipes for formatting data, gives a brief overview of these
functions.

You can reset the current file position to the start of the file by calling rewind(). It is
shown here:

void rewind(FILE *fp)

The file to rewind is specified by fp.
To flush a stream using the C I/O system, call fflush(), shown here:

int fflush(FILE *fp)

It writes the contents of any buffered data to the file associated with fp. If you call fflush()
with fp being null, all files opened for output are flushed. The fflush() function returns zero
if successful; otherwise, it returns EOF.

You can rename a file by calling rename(). You can erase a file by calling remove().
These functions are described by the next recipe.

One last point: Although C++ supports both the C and the C++1/0 systems, there are
some guidelines that you should follow to avoid problems. First, once a stream has been
opened using one of the systems, it should be acted on by only the functions defined by that
system. In other words, you should not mix both C and C++ 1/O on the same file. Second, in
general, it is better to use the C++ class-based I/O system. C++ supports the C I/O system
for backward compatibility with existing C programs. The C I/O system is not intended for
new C++ programs.

Chapter 5: Working with 1/0 363

rd

Rename and Remove a File

I Key Ingredients
Headers Classes Functions
<cstdio> int remove(const char *fname)
int rename(const char *oldname,
const char *newname)

The previous recipe presented a brief overview of C-based file I/O. As mentioned there, C++
fully supports the entire C I/O system, so it is usually better to use the I/O system for C++.
However, there are two functions defined by the C I/O system that offer simple solutions
to two common tasks: renaming a file and erasing a file. The functions are rename() and
remove(). They are declared in <estdio>, and this recipe shows how to use them.

Step-by-Step

To rename a file involves one step:
1. Call rename(), specifying both the current name of the file and its new name.
To erase a file involves one step:

1. Call remove(), specifying the name of the file to remove.

Discussion
The rename() function renames a file. It is shown here:

int rename(const char *oldname, const char *newname)

The current name of the file is passed in oldname. The new name of the file is passed in
newname. It returns zero if successful and non-zero otherwise. In general, the file must be
closed before an attempt is made to rename it. Also, as a general rule, it is not possible to
rename a read-only file. Furthermore, it is not possible to give a file a name that is already
used by another file. In other words, you can't create a situation in which duplicate file
names exist in the same directory.

The remove() function erases a file. It is shown here:

int remove(const char *fname)

It removes from the file system the file whose name is specified by frname. It returns zero if
successful and non-zero otherwise. The file must be closed before an attempt is made to
erase it. As a general rule, the file must also not be read-only or otherwise prevented from
being removed.

364

Herb Schildt's C++ Programming Cookbook

Example

The following example shows both rename() and remove() in action. It creates a file called
test.dat. Then, if the command-line argument is "rename," it renames test.dat to test2.dat. If
the command-line argument is "erase," it removes test2.dat.

// Demonstrate rename () and remove () .

#include <iostream>
#include <cstdio>
#include <cstring>
#include <fstream>

using namespace std;
int main(int argc, char *argvl([])

{

int result;

if (argc != 2) {
printf ("usage: EraseRenname <erase/rename>\n") ;
exit (1) ;

1

ofstream fout ("test.dat") ;

if (1fout) {
cout << "Cannot open test.dat file.\n";
return 1;

}

fout << "Write some data to the file.";

fout.close() ;

if (! fout.good()) {
cout << "Error writing to or closing file.\n";
return 0;

}

if (!strcmp ("erase", argv[l])) {

result = remove ("test2.dat") ;
if (result) {
cout << "Cannot remove file.\n";

return 1;
} else if (!strcmp("rename", argv([1])) {
result = rename ("test.dat", "test2.dat");

if (result) {
cout << "Cannot rename file.\n";
return 1;

}

Chapter 5: Working with 1/0 365

} else
cout << "Invalid command-line argument.\n";

return O;

}

Options and Alternatives
All operating systems provide low-level API functions that erase and rename files. They
may offer more finely grained control over these operations. For example, they may let you
specify a security descriptor. For detailed control, you might want to use the operating
system primitives rather than remove() or rename().

In some environments, you can use rename() to rename a directory. It may also be
possible to move a file from one directory to another by using rename(). Check your
compiler's documentation for details.

This page intentionally left blank

CHAPTER
Formatting Data

hether you are displaying the time and date, working with monetary values, or

simply wanting to limit the number of decimal digits, formatting data is an

important part of many programs. It's also an aspect of programming that raises
many questions. One reason for this is the size and complexity of the problem: There are
many different types of data, formats, and options. Another reason is the richness of the
C++ formatting capabilities. Often, there is more than one way to produce a desired format.
For example, you can set various formatting attributes by using functions such as setf(),
width(), or precision(), or with I/O manipulators, such as setw, fixed, or showpos. Here is
another example: You can format time and date by using either the C++ localization library
or the strftime() function inherited from C. Frankly, choosing an approach is sometimes a
difficult decision, especially when legacy code is involved. Of course, the benefit of such
extensive and flexible support for formatting is that you can use the best technique for the
job at hand.

This chapter examines the topic of formatting and presents recipes that demonstrate
various ways to solve several common formatting tasks. In the process, it describes aspects
of localization, including the use of facets. Although the main emphasis is on the formatting
features defined by C++, the original C-based approach is also included.

Here are the recipes contained in this chapter:

e Access the Format Flags via Stream Member Functions
¢ Display Numeric Values in Various Formats

¢ Set the Precision

¢ Set the Field Width and Fill Character

* Justify Output

¢ Use I/O Manipulators to Format Data

¢ Format Numeric Values for a Locale

¢ Format Monetary Values Using the money_put Facet

¢ Use the moneypunct and numpunct Facets

¢ Format Time and Date Using the time_put Facet

¢ Format Data into a String

367

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

368

Herb Schildt's C++ Programming Cookbook

¢ Format Time and Date Using strftime()

e Use printf() to Format Data

One important note before we begin. As explained in Chapter 5, the C++ I/0O system is
built on generic classes that can operate on different types of characters. Furthermore, it
declares specializations of those classes for char and wchar_t. For convenience, this chapter
uses the char specializations exclusively. Thus, the char-specialization names, such as ios,
ostream, and istream, are used (rather than basic_ios, basic_ostream, basic_istream, and so
on). However, the information also applies to streams defined on other character types.

Formatting Overview

There are several ways in which the format of data can be specified or affected. You can:

¢ Use stream member functions to set or clear one or more format flags.
¢ Use stream member functions to set the field width, precision, and fill character.

* Use an I/O manipulator within a formatted output expression to set format flags or
other attributes.

¢ Use the functionality defined by the C++ localization library to format numeric
values, monetary values, and time and date.

e Use the printf() family of functions, which are inherited from the C language, to
format data (except for time and date).

e Use strftime(), also inherited from C, to format time and date.

All of these are demonstrated by recipes in this chapter, but the primary focus is on the first
four because they represent the modern C++ approach to formatting. The printf() and
strftime() functions, which are inherited from C, are covered for completeness, but most
new code should use the C++ features.

Although the specifics of each formatting approach are described by the recipes,
a general overview is presented here.

The Format Flags

Each stream has associated with it a set of format flags that control the way information is
formatted. These flags are contained in a bitmask enumeration called fmtflags that is
defined by ios_base. (See Chapter 5 for details on streams and the C++1/0 system in
general.) The format flags are shown here:

boolalpha dec fixed hex
internal left oct right
scientific showbase showpoint showpos
skipws unitbuf uppercase

Following is a brief description of each flag. Several are explored in detail in the recipes.

Chapter 6: Formatting Data 369

The left, right, and internal flags determine how data is justified within a field. They
form a group in which only one should be set at any given time. When the left flag is set,
output is left-justified. When right is set, output is right-justified. When the internal flag is
set, a numeric value is padded to fill a field by inserting the fill character (which is a space
by default) between any sign or base character. In many locales, the default is right
justification.

By default, numeric values are output in decimal, but it is possible to select the number
base by using the oct, hex, and dec flags. These flags form a group in which only one should
be set at any given time. When the oct flag is set, output is displayed in octal. Setting the
hex flag causes output to be displayed in hexadecimal. To return output to decimal, set the
dec flag.

Setting showbase causes the base of numeric values to be shown. For hexadecimal, a
value will be preceded by a Ox. For example, 1F will be displayed as 0x1F. For octal, the
value will be preceded by a 0, as in 076. Decimal values are unaffected.

By default, when scientific notation is displayed, the e is in lowercase. Also, when a
hexadecimal value is displayed, the x is in lowercase. When uppercase is set, these characters
are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before positive values.

Setting showpoint causes a decimal point and trailing zeros to be displayed for all
floating-point output—whether needed or not.

Setting the scientific flag causes floating-point numeric values to be displayed using
scientific notation. When fixed is set, floating-point values are displayed using fixed-point
notation. These flags form a group in which only one should be set at any given time. When
neither flag is set, the compiler chooses an appropriate method.

When unitbuf is set, the buffer is flushed after each insertion operation.

When boolalpha is set, booleans can be input or output using the keywords true and
false. Otherwise, the digits 1 and 0 are used.

The skipws flag applies to input streams. When it is set, leading whitespace characters
(spaces, tabs, and newlines) are discarded when performing input on a stream. When
skipws is cleared, whitespace characters are not discarded.

Also defined are the values basefield, adjustfield, and floatfield. The basefield is defined
as oct | dec | hex. Thus, basefield lets you refer to the fields oct, dec, and hex collectively.
Similarly, the left, right, and internal fields are combined in adjustfield. Finally, the scientific
and fixed fields can be referenced as floatfield. As the recipes will demonstrate, these values
simplify setting a specific flag within a group of flags.

The format flags are defined by ios_base, which is a base class for basic_ios. As explained
in Chapter 5, the C++1/0 system creates specializations for streams of type char and wchar_t.
The char specialization of basic_ios is ios. Therefore, it is common to see the format flags
referred to through ios, as in ios::oct. This is the approach that this chapter will use. (Although
it is perfectly fine to use ios_base::oct if you prefer.)

The Field Width, Precision, and Fill Character

In addition to the format flags just described, each C++ stream has associated with it three
attributes that affect formatting. These are the field width, the precision, and the fill
character. The field width specifies the minimum number of characters that a formatted
item will occupy. By default, the field width is equal to the number of characters in the item
being displayed, but you can change this so that an item is contained within a larger space.

310

Herb Schildt's C++ Programming Cookbook

By default, the character used to pad output is the space, but you can change this. Finally,
the default precision of floating-point values is 6, but this, too, is under your control.

Format-Related Stream Member Functions

Each C++ stream contains its own set of format flags and the field width, precision, and fill
character attributes. For any given stream, the format flags can be set, cleared, or interrogated
by using the setf(), unsetf(), and flags() functions. These are members of ios_base. The
field width is set by width(), and the precision is set by precision(). Both are also members
of ios_base. The fill character is set by fill(), which is a member of ios. They are described in
detail in the recipes.

The 1/0 Manipulators

Another way to set the format flags and attributes is through the use of a manipulator. A
manipulator is a function (or in some cases, an object) that is included in a formatted I/O
expression. It can be used to set or clear the format flags or otherwise affect the stream. C++
defines several standard manipulators. They are shown here:

boolalpha dec endl

ends fixed flush

hex internal left

nobooalpha noshowbase noshowpoint
noshowpos noskipws nounitbuf
nouppercase oct resetiosflags(fmtflags f)
right scientific setbase(int base)
setfill(int ch) setiosflags(fmtflags f) setprecision(int p)
setw(int w) showbase showpoint
showpos skipws unitbuf
uppercase ws

The manipulators fall into two general categories: parameterized and parameterless.

A parameterized manipulator requires an argument when it is used. An example of a
parameterized manipulator is setw. It sets the field width to the size passed to it. A
parameterless manipulator does not take an argument. For example, the endl manipulator
does not have an argument. Most of the standard manipulators do not take arguments.

The majority of parameterless manipulators are defined by the header <ios>, which is
automatically included by other headers, such as <iostream>. Three are defined by the
<ostream> header: endl, ends, and flush. The parameterized manipulators are defined in
<iomanip>. The manipulators are described in detail in Use I/O Manipulators to Format Data.

Format Data Using the Localization Library

To format data beyond the basic capabilities provided by the format flags and attributes
requires the use of one or more library functions and classes. For some types of formatting,
you can use functions inherited from C (the language on which C++ was built). These are

Chapter 6: Formatting Data 371

mostly useful for maintaining legacy code and are described by the following sections. For
new code, you will usually use the formatting features defined by the localization library.
This library is defined in the <locale> header, and it provides support for formatting data,
such as monetary values and time and date, whose representation is sensitive to culture and
language.

The localization library is based on the locale class, which defines a locale. A locale
encapsulates the geopolitical information associated with a stream. It is important to
understand that each stream has its own locale object. Thus, setting a stream's locale affects
only that stream. This differs from the C language, in which a global locale is available.
(C++ still supports the global locale to provide backward compatibility with C, but the
stream-based locales are much more flexible.)

The key to using a locale instance to handle formatting is the facet. A facet is an instance of
a class that inherits locale::facet. Each facet describes some aspect of the locale. For example,
the facet that handles monetary formatting is money_put. The facet that formats time and
date is time_put. By using a facet, data can be formatted as you desire and also automatically
tailored to a specific locale. This makes the C++ localization subsystem very powerful. A
general overview of facets is presented shortly, and specific information about the facets that
handle numeric values, monetary values, and time and date is given in the recipes.

The printf() Family of Functions
Because C++ was built on C, it includes all of the function libraries defined by C. This means
that C++ supports the printf() family of functions. These functions are part of C's I/O
system and provide the mechanism by which a C program formats data. Although the use of
printf() is not recommended for new C++ code, it is the function that you will use when
writing C programs. It is also frequently encountered in legacy code. Therefore, no C++
cookbook would be complete without a discussion of its features.

There are several variations on printf(). The ones used in this chapter are:

printf() Displays formatted output on the standard output
device, which is the console by default.

fprintf() Writes formatted output to a file.

sprintf() Writes formatted output to string.

All require the header <cstdio>, and all work in the same basic way. It is simply the target
of the output that changes. The operation of these functions is described in Use printf() to
Format Data.

NOTE Wide-character versions of the printf() family of functions are also available. For example,
the wide-character version of printf() is wprintf(). The wide-character versions use the header
<cwchar>.

The strftime() Function

Another formatting function inherited from C is strftime(). It formats time and date
information. Although the C++ facets, such as time_put, provide more flexibility, the
strftime() function can be easier to use in some cases. It is also commonly encountered in
legacy C code. It is described in Format Time and Date Using strftime().

372 Herb Schildt's C++ Programming Cookbook

Facet Overview

Facets are the means by which data is formatted in C++. They are part of the localization
library, which requires the header <locale>. Perhaps the single most important thing to
understand about facets is that they are easier to use than they first appear. Don't be
intimidated by the rather complex template syntax. Once you understand the general
process, it is easy to create any type of localized format you desire. Because several recipes
make use of facets, it makes sense to describe the general procedure in one place, with the
individual recipes describing specifics.

All facets are classes that are derived from locale::facet. There are several built-in facets,
such as money_put, time_get, and num_put, which are also declared in <locale>. These
classes are used to format data for output or read formatted data from input. This chapter is
concerned only with formatting data for output, so the input facets are not used here.
Furthermore, this chapter uses only the facets that format numeric values, monetary values,
or the time and date. The localization library defines other facets that handle other locale-
sensitive needs.

Conceptually, using a facet is easy: Obtain a facet by calling use_facet(), and then call
functions on that facet to format data or obtain localization information. However, in
practice, the process is usually a bit more involved. Here is a general outline of the steps:

1. Construct a locale object.

2. Set the desired locale by calling imbue() on the stream that will be receiving the
formatted output. Pass imbue() the locale object from Step 1.

3. Obtain a facet by calling use_facet(), specifying the name of the facet. This is a
global function defined by <locale>.

4. To format numeric values, monetary values, or the time and date, or to obtain
information about a format, use the functions defined by the facet obtained in Step 3.

Let's look more closely at these steps.
The locale class defines several constructors. The one used by this chapter is shown
here:

explicit locale(const char *loc_name)

The name of the locale is passed via loc_name. This must be a valid locale name. If loc_name
is invalid, a runtime_error is thrown. What constitutes a valid name is implementation-
dependent. This book uses locale strings that are compatible with Microsoft's Visual C++.
You will need to check your compiler's documentation for the locale strings that it supports.

To set a stream's locale, call imbue(). It is defined by ios_base and is available in all
stream objects. The process of a setting a locale is described in detail in Obtain or Set a
Stream’s Locale in Chapter 5. For convenience, imbue() is shown again here:

locale imbue(const locale &newloc)

The invoking stream's locale is set to newloc, and the old locale is returned.

Chapter 6: Formatting Data 373

To obtain a facet, call use_facet(). It is a global function and is shown here:
template <class Facet> const Facet &use_facet(const locale &loc)

Here, Facet must be a valid facet. It specifies the facet that will be obtained, which will
normally be one defined by <locale>. (It is possible to create custom facets, but you seldom
need to do so.) The locale for which the facet will be obtained is passed in loc. The use_facet()
function returns a reference to the facet specified by Facet. If the facet does not exist, bad_cast
is thrown. (If necessary, you can determine if a facet exists by calling has_facet(), which is also
a global function defined by <locale>.)

There are several predefined facets. The ones used by this book are:

num_put Formats numeric values.

money_put Formats monetary values.

time_put Formats time and date.

numpunct Obtains punctuation and rules related to numeric formats.
moneypunct Obtains punctuation and rules related to monetary formats.

The recipes show their declarations, but all are template classes that take the character type
as a type argument. (Some also take other type arguments.) The num_put, money_put, and
time_put facets format numbers, money, and time and date, respectively. They define the
put() function, which formats the value that it is passed according to the rules encapsulated
by the facet. (Each of the put() functions is described in its own recipe.) The numpunct
facet encapsulates information about the punctuation and rules governing the format of
numeric data. The moneypunct facet encapsulates the punctuation and rules governing the
format of monetary values.

To obtain a facet, you will call use_facet(), specifying the facet's name as the type
parameter. For example, this obtains a money_put facet associated with the locale currently
used by cout:

const money put<char> &mp = use facet<money put<char> >(cout.getloc()) ;

Notice that the char version of money_put is requested because cout is a char stream. Once
you have a facet, you can use it for formatting by calling functions on it. The recipes
describe the process in detail.

Here is a very important point: When using a C++ stream, numbers are automatically
output by use of the num_put facet. Therefore, you don't need to manually obtain this facet
to display numeric values in a locale-specific way. Simply set the locale of the stream by use
of imbue(), and the value will automatically be formatted for that locale.

NOTE You can also set the locale globally, using the setlocale() C legacy function. However, this
approach is not recommended for new code. The facet-based locale system used by C++ offers
a better and more flexible approach.

314 Herb Schildt's C++ Programming Cookbook

e

Access the Format Flags via Stream Member Functions

I Key Ingredients
Headers Classes Functions
<ios> ios_base fmtflags setf(fmtflags flags)
void unsetf(fmtflags flags)
fmtflags flags()

For any given stream, you can change the way data is formatted by changing one or more
format flags. For example, if you set the showpos flag, then positive numeric values are
displayed with a leading + sign. There are two ways in which the format flags can be set.
First, you can use functions that are defined by all stream classes, such as setf(). Second,
you can use an I/O manipulator. This recipe shows how to use the stream member functions.
Manipulators are described by a later recipe.

Step-by-Step
To use stream member functions to set, clear, or obtain the format flags involves these steps:

1. To set one or more flags on a stream, call setf().
2. To clear one or more flags on a stream, call unsetf().

3. To obtain the current format flag settings, call flags().

Discussion

For any given stream, you can set a format flag by calling the setf() function, which is
declared by ios_base. Therefore, setf() is a member of all stream classes. It is shown here:

fmtflags setf(fmtflags flags)

This function returns the previous settings of the format flags and turns on those flags
specified by flags. For example,

mystream.setf (ios: :showpos) ;

turns on the showpos flag for the stream called mystream.
The complement of setf() is unsetf(). It is also declared by ios_base. It clears one or
more format flags. Its general form is:

void unsetf(fmtflags flags)

The flags specified by flags are cleared. All other flags are unaffected. Therefore, to turn off
the boolalpha flag for mystream, you would use this statement:

mystream.unsetf (ios: :boolalpha) ;

Chapter 6: Formatting Data 375

You can set or clear more than one flag in a single call to setf() or unsetf() by
OR-ing two or more flags together. For example, this turns on both the showpos and
boolalpha flags:

mystream.setf (ios::showpos | ios::boolalpha) ;
The following turns off the uppercase and boolalpha flags:
mystream.unsetf (ios: :uppercase | ios::boolalpha) ;
You can obtain the current format flag settings by using flags(). It is shown here:
fmtflags flags() const

It returns the current format flag bitmask. It, too, is declared by ios_base.

It is important to understand that each stream instance has its own set of format flags.
Therefore, changing the flag settings for a stream affects only that stream. The format flags
of any other stream are unchanged.

Example

The following example shows how to set and clear format flags. It first sets the boolalpha
flag on cout and then displays a bool value. It then clears the boolalpha flag and redisplays
the value. Notice the difference in the output.

// Demonstrate the setf () and unsetf () functions.
#include <iostream>
using namespace std;

int main ()

{

// Set the boolalpha flag on cout.
cout.setf (ios: :boolalpha) ;

cout << "The value true when the boolapha flag is set: "
<< true << endl;;

// Now, clear the boolalpha flag.
cout .unsetf (ios: :boolalpha) ;

cout << "The value true when the boolapha flag is cleared: "
<< true << endl;;

return O;

}
The output is shown here:

The value true when the boolapha flag is set: true
The value true when the boolapha flag is cleared: 1

316

Herb Schildt's C++ Programming Cookbook

Bonus Example: Display the Format Flag Settings

When debugging format problems, it is sometimes helpful to see how all of the format flags
are set. It has been my experience that some compilers behave in unexpected ways due

to the interaction of seemingly unrelated flags. Also, there can be differences between
compilers when two flags conflict. For example, if both the oct and dec flags are set, which
format is used? Different compilers might resolve this situation differently. (Of course, good
programming practice dictates that only one of the flags oct, dec, or hex is set at any one
time.) Being able to see the actual flag settings can help explain otherwise unusual results.
Towards this end, the following program creates a function called showflags(), which takes
a stream as an argument and displays the current settings of that stream's format flags:

// This program creates a function called showflags()
// that displays the format flag settings associated
// with a given stream.

#include <iostream>
using namespace std;
void showflags(ios &strm) ;

int main()

{
// Show default condition of format flags.
cout << "Default settings for cout:\n";
showflags (cout) ;

// Set the right, showpoint, and fixed flags.
cout.setf (ios::right | ios::showpoint | ios::fixed);

// Show flags after call to setf ().
cout << "Flags after setting right, showpoint, and fixed:\n";
showflags (cout) ;

return O;

}

// This function displays the status of the format flags
// for the specified stream.
void showflags(ios &strm)

{

ios::fmtflags f;

// Get the current flag settings.
f = strm.flags();

if (f & ios::boolalpha) cout << "boolalpha:\ton\n";
else cout << "boolalpha:\toff\n";

if (f & ios::dec) cout << "dec:\t\ton\n";
else cout << "dec:\t\toff\n";

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

if (£
else

cout

}

Chapter 6:

& ios::hex) cout << "hex:\t\ton\n";
cout << "hex:\t\toff\n";

& ios::oct) cout << "oct:\t\ton\n";
cout << "oct:\t\toff\n";

& ios::fixed) cout << "fixed:\t\ton\n";
cout << "fixed:\t\toff\n";

& ios::scientific) cout << "scientific:\ton\n";
cout << "scientific:\toff\n";

& ios::right) cout << "right:\t\ton\n";
cout << "right:\t\toff\n";

& ios::left) cout << "left:\t\ton\n";
cout << "left:\t\toff\n";

& ios::internal) cout << "internal:\ton\n";
cout << "internal:\toff\n";

& ios::showbase) cout << "showbase:\ton\n";
cout << "showbase:\toff\n";

& ios::showpoint) cout << "showpoint:\ton\n";
cout << "showpoint:\toff\n";

& ios::showpos) cout << "showpos:\ton\n";
cout << "showpos:\toff\n";

& los::uppercase) cout << "uppercase:\ton\n";
cout << "uppercase:\toff\n";

& ios::unitbuf) cout << "unitbuf:\ton\n";
cout << "unitbuf:\toff\n";

& ios::skipws) cout << "skipws:\t\ton\n";
cout << "skipws:\t\toff\n";

<< " \l’l";

Formatting Data

The output is shown here. (This output was generated by Visual C++. Your compiler may
show different default settings.)

Default settings for cout:

boolalpha: off
dec: on
hex: off
oct: off
fixed: off
scientific: off

right:

off

3n

318

Herb Schildt's C++ Programming Cookbook

left: off
internal: off
showbase: off
showpoint: off
showpos: off
uppercase: off
unitbuf: off
skipws: on

Flags after setting right, showpoint, and fixed:

boolalpha: off
dec: on
hex: off
oct: off
fixed: on
scientific: off
right: on
left: off
internal: off
showbase: off
showpoint: on
showpos: off
uppercase: off
unitbuf: off
skipws: on

Options and Alternatives
There is an overloaded form of setf() that takes this general form:

fmtflags setf(fmtflags flags1, fmtflags flags2)

In this version, only the flags specified by flags2 are affected. They are first cleared and then
set according to the flags specified by flags1. Note that even if flags1 contains other flags,
only those specified by flags2 will be affected. The previous flag settings are returned.
Perhaps the most common use of the two-parameter form of setf() is when setting the
number base, justification, and floating-point format flags. See the following recipes for
details.

You can set all of the format flags by using this overloaded version of flags():

fmtflags flags(fmtflags flags)

This version sets the entire format flags bitmask to the value passed in flags. The previous
bitmask is returned.

The format flags can be set by various manipulators. For example, the noboolalpha
manipulator clears the boolalpha flag. You can also set or clear one or more flags using the
setiosflags and resetiosflags manipulators. See Use I/O Manipulators to Format Data.

Chapter 6: Formatting Data 379

”~

Display Numeric Values in Various Formats

I Key Ingredients

Headers Classes Functions and Flags

<ios> ios_base fmtflags setf(fmtflags flags)
void unsetf(fmtflags flags)
oct
hex
dec
showbase
showpos
fixed
scientific
basefield
floatfield

Through the use of the format flags, you can control several aspects of the numeric format.
For example, you can output integers in decimal, hexadecimal, or octal, or display floating-
point values in either fixed or scientific notation. This recipe demonstrates those flags that
affect the format of numbers.

Step-by-Step
Using the format flags to change the format of numeric data involves these steps:
1. To format an integer in decimal, clear the flags specified by basefield and then set
the dec flag. Normally, decimal format is the default for an output stream.

2. To format an integer in hexadecimal, clear the flags specified by basefield and then
set the hex flag.

3. To format an integer in octal, clear the flags specified by basefield and then set the
oct flag.

4. To show the base of an octal or hexadecimal value, set the showbase flag.

5. To format a floating-point value in fixed notation, clear the flags specified by
floatfield and then set the fixed flag.

6. To format a floating-point value in scientific notation, clear the flags specified by
floatfield and then set the scientific flag.

7. To cause a + sign to be displayed before positive values, set the showpos flag.

8. To ensure that the decimal point is always included in a floating-point value, set the
showpoint flag.

380

Herb Schildt's C++ Programming Cookbook

9. To cause letters in numeric values (hexadecimal digits greater than 0, the e in
scientific notation, and the x in the hexadecimal base indicator) to be displayed in
uppercase, set the uppercase flag.

Discussion
The format flags are set or cleared by the setf() and unsetf() functions, which are described
in detail by the preceding recipe.

In general, you can display integer values in decimal (the default), hexadecimal, or octal.
This is controlled by the settings of the dec, hex, and oct flags, respectively. To set the number
base, you must turn on the desired flag and turn off the other two flags. For example, to
output integers in octal, you must turn on oct and turn off dec and hex. Collectively, the flags
oct, hex, and dec can be referred to as basefield.

The easiest way to turn on one flag and ensure that the other two are off is to use the
two-argument form of setf(). As explained in the previous recipe, it has this general form:

fmtflags setf(fmtflags flags1, fmtflags flags2)

In this version, only the flags specified by flags2 are affected. They are first cleared and then
set according to the flags specified by flags1. Therefore, to set a number base, you will pass
basefield to flags2 (which causes the oct, hex, and dec flags to be cleared) and pass the
desired number base flag to flags1. For example, the following sets the number base of cout
to hexadecimal:

cout.setf (ios::hex, ios::basefield);

After this call, the hex flag will be set and the dec and oct flags will be cleared. This means
that all integer output to cout will be displayed in hexadecimal.

When displaying integers, you can cause the base to be shown by setting the showbase
flag. When set, values displayed in octal begin with a leading 0. Values displayed in
hexadecimal begin with a leading Ox. Decimal values are unaffected.

Be default, floating-point values are formatted in either fixed-point format or in scientific
notation, whichever is shorter. You can specify fixed-point representation by setting the fixed
flag. You can specify scientific notation by setting the scientific flag. In either case, the other
flag must be turned off. The easiest way to do this is to use the two-argument form of setf(),
specifying floatfield as the flags to turn off. Recall that floatfield combines both the fixed
and scientific flags.

To cause a leading + sign to precede positive values, set the showpos flag. In general,
showpos only affects floating-point values and integers displayed in decimal. Integers
displayed in octal or hexadecimal will not be affected.

To cause a decimal point to be displayed, even when there are no fractional digits, set
the showpoint flag.

By default, letters in numeric values, which include the hexadecimal digits a-f, the e in
scientific notation, and the x in the hexadecimal base indicator, are displayed in lowercase.
To change this to uppercase, specify the uppercase flag.

Example

The following example shows the numeric formatting flags in action:

Chapter 6: Formatting Data 381

// Demonstrate the numeric format flags.

//

// This example uses cout, but any output stream
// could be substituted.

#include <iostream>
using namespace std;

int main()

{
int x = 100;
double £ = 98.6;
double f2 = 123456.0;
double f3 = 1234567.0;

cout.setf (ios::hex, ios::basefield);
cout << "x in hexadecimal: " << X << endl;

cout.setf (ios::oct, ios::basefield);
cout << "x in octal: " << X << endl;

cout.setf (ios::dec, ios::basefield);
cout << "x in decimal: " << x << "\n\n";

cout << "f, f2, and f3 in default floating-point format:\n";
cout << "f: " << f << " f2: " << £f2 << " £3: " << f3 << endl;

cout.setf (ios::scientific, ios::floatfield);
cout << "After setting scientific flag:\n";
cout << "f: " << f << " f2: " << f2 << " f3: " << f3 << endl;

cout.setf (ios::fixed, ios::floatfield);
cout << "After setting fixed flag:\n";
cout << "f: " << £ << " f2: " << f2 << " f3: " << f3 << "\n\n";

// Return to default floating-point format.
cout << "Returning to default floating-point format.\n";
cout .unsetf (ios::fixed) ;

cout << "f2 in default format: " << f2 << "\n\n";

// Set the showpoint flag.

cout << "Setting showpoint flag.\n";
cout.setf (ios: :showpoint) ;

cout << "f2 with showpoint set: " << f2 << "\n\n";

cout << "Clearing the showpoint flag.\n\n";
cout.unsetf (ios: :showpoint) ;

// Set the showpos flag.
cout.setf (ios: :showpos) ;
cout << "Setting showpos flag.\n";

382

Herb Schildt's C++ Programming Cookbook

cout << "x in decimal after setting showpos: " << x << endl;
cout << "f in default notation after setting showpos: " << f << "\n\n";

// Set the uppercase flag.

cout << "Setting uppercase flag.\n";
cout.setf (ios: :uppercase) ;

cout << "f3 with uppercase flag set: " << £3 << endl;

return O;

}
The output is shown here:

x in hexadecimal: 64
x in octal: 144
x in decimal: 100

£, £2, and £f3 in default floating-point format:

f: 98.6 f2: 123456 £3: 1.23457e+006

After setting scientific flag:

f: 9.860000e+001 f2: 1.234560e+005 £3: 1.234567e+006
After setting fixed flag:

f: 98.600000 f2: 123456.000000 £3: 1234567.000000

Returning to default floating-point format.
f2 in default format: 123456

Setting showpoint flag.
f2 with showpoint set: 123456.

Clearing the showpoint flag.

Setting showpos flag.
x in decimal after setting showpos: +100
f in default notation after setting showpos: +98.6

Setting uppercase flag.
f3 with uppercase flag set: +1.23457E+006

Options and Alternatives

The numeric format flags can be set using manipulators. For example, the showpoint flag
can be set by the showpoint manipulator and cleared by the noshowpoint manipulator. See
Use I/O Manipulators to Format Data for details.

For any given stream, the default precision is 6 digits, but you can change this by calling
the precision() function. See Set the Precision for details You can also specify a field width in
which the value is displayed by calling width() and the fill character used to pad fields that
are larger than the output by calling fill(). These are described in Set the Field Width and Fill
Character.

Chapter 6: Formatting Data 383

'

Set the Precision

I Key Ingredients
Headers Classes Functions
<ios> ios_base streamsize precision(streamsize prec)

Each stream has a precision setting associated with it that determines how many digits are
displayed when a floating-point value is formatted. The default precision is 6. You can
change this by calling precision(). As explained in the discussion that follows, the exact
meaning of the precision differs based on what floating-point format is used.

Step-by-Step

To set the precision involves the following steps:

1. Set the precision by calling precision() on the stream.

2. In some cases, you may need to adjust the floating-point format by setting either the
fixed or scientific flag to achieve the desired results.

Discussion

Each stream has its own precision attribute. The precision is set by calling precision() on
the stream. This function is a member of ios_base and is inherited by all stream classes. One
of its forms is shown here:

streamsize precision(streamsize prec)

The precision of the invoking stream is set to prec. The previous precision is returned. The
default precision of a stream is 6. The streamsize type is defined as some form of integer
that is capable of holding the largest number of bytes that can be transferred in any one
I/0 operation.

The precise effect of the precision is based on the floating-point format being used. For
the default format, the precision determines the number of significant digits displayed. For
fixed-point or scientific notation, the precision determines the number of digits displayed
to the right of the decimal point. (Scientific notation is used when the scientific flag is set
and the fixed flag is cleared. Fixed-point notation is used when the scientific flag is cleared
and the fixed flag is set.)

Setting the precision answers one of the most common "How-To" questions: "How do I
display two decimal places?" This is easily accomplished by setting the fixed flag and then
setting the precision to 2. After doing this, two decimal places will be displayed in all cases,
even when there are no significant decimal digits. More generally, if you need to specify a
fixed number of decimal digits, then set the fixed flag and specify the number of digits in
a call to precision().

384 Herb Schildt's C++ Programming Cookbook

Example

The following example shows the effects of setting the precision:
// Demonstrate setting the precision.

#include <iostream>

using namespace std;

int main ()

{

double f = 123456.123456789;

cout << "Using default numeric format.\n";
cout << "f with default precision: " << £ << "\n\n";

cout << "Setting the precision to 9.\n";
cout.precision(9) ;

cout << "f with precision of 9: " << f << "\n\n";

cout << "Switching to fixed-point format.\n";
cout.setf (ios::fixed, ios::floatfield);

cout << "f with precision of 9 in fixed-point: " << f << "\n\n";
// Now, display two decimal places.

cout << "Display two decimal places in all cases: ";
cout.precision(2) ;

cout << 12.456 << " " << 10.0 << " " << 19.1 << endl;

return O;

}
The output is shown here:

Using default numeric format.
f with default precision: 123456

Setting the precision to 9.
f with precision of 9: 123456.123

Switching to fixed-point format.
f with precision of 9 in fixed-point: 123456.123456789

Display two decimal places in all cases: 12.46 10.00 19.10

Options and Alternatives
There is a second form of precision(), shown here:

streamsize precision() const

Chapter 6: Formatting Data 385

This form returns the current precision, but does not change it.
Another way to set a stream's precision is to use the I/O manipulator setprecision. It is
described in Use the I/O Manipulators to Format Data.

Set the Field Width and Fill Character

I Key Ingredients
Headers Classes Functions
<ios> ios_base streamsize width(streamsize w)
<ios> ios char fill(char ch)

This recipe shows how to specify a field width and a fill character. By default, when a value
is output, it occupies only as much space as the number of characters that it takes to display
it. This is often exactly what you want. However, sometimes, you will want the value to fill
a certain field width, such as when you want columns of data to line up. Although there are
various ways to achieve that outcome, by far, the easiest is to specify a field width. Once
done, each item will be automatically padded so that it fills the field width. The default fill
character is a space, and this is often what you want, but you can change it.

Step-by-Step
To specify the field width and the fill character involves these steps:

1. To specify a field width, call width() on the stream.
2. To change the fill character, call fill() on the stream.

Discussion

You can specify a minimum field width by using the width() function. It has two forms.
The one used in this recipe is shown here:

streamsize width(streamsize w)

Here, w becomes the field width and the previous field width is returned. As a general rule,
the field width must be set immediately before outputting the item for which you want the
field width to apply. After that item is output, the field width returns to its default. (I have
seen implementations in which setting the field width once applied to all subsequent output,
but this is nonstandard behavior.) The streamsize type is a typedef for some form of integer.

After you set a minimum field width, when a value uses less than the specified width,
the field will be padded with the current fill character (space, by default) to reach the
desired width. If the size of the value exceeds the minimum field width, then the field will
be overrun. No values are truncated.

386

Herb Schildt's C++ Programming Cookbook

In the default locale, output is right-justified. This means that if a field needs to be
padded to achieve a specified width, then padding characters will be added to the left of the
data. When output is left-justified, padding will be added to the right of the data. When the
internal flag is set, padding is added within the interior of some types of numeric formats.
For example, if the showpos flag is set, then padding takes place between the leading + sign
and the digits. See Justify Output for details.

When a field needs to be filled, it is filled with the fill character, which is a space by default.
You can specify a different character by using the fill() function. It has two forms. The one
used here is:

char fill(char ch)

After a call to fill(), ch becomes the new fill character and the old one is returned.

Example

The following example demonstrates setting the field width and the fill character. There are
two important things to notice in this program. First, that a call to width() affects only the
next item output. Second, that fill characters are added between the + sign and the digits
when numeric data is displayed when the internal and showpos flags are set.

// Demonstrate width() and £1i11().
#include <iostream>
using namespace std;

int main()

{
// Use default width.
cout << "Hello" << endl;

// Set width to 10.
cout.width(10) ;
cout << "Hello" << endl;

// Notice how width returns to default after an item is output.
cout << "Hello" << endl;

// Now set the width and the fill character.
cout.width(10) ;

cout.fill ('*"');

cout << "Hello" << endl;

// Notice that fill character stays set.
cout .width(12) ;
cout << 123.45 << endl;

// Now, pad the field width with spaces and
// set the internal and showpos flags.
cout.width(12) ;

cout.fill (' ');

Chapter 6: Formatting Data 387

cout.setf (ios::showpos | ios::internal);
cout << 765.34 << endl;

return O;

}

The output is shown here:

Hello

Hello
Hello
*****Hello
******123 .45
+ 765.34

Bonus Example: Line Up Columns of Numbers

One of the most common uses of a minimum field width is to create tables in which columns
of numbers line up one over another. To do this, simply specify a field width that is at least as
large as the maximum number of digits that you will display, plus the decimal point and +
sign, if present. The following program demonstrates the process by creating a table of the
powers of 2 and 3. Notice that the columns line up.

// Line up columns of data.
#include <iostream>

using namespace std;

int main ()

{
cout << "Root | Square | Cube\n" ;
for(int 1 = 1; i < 11; ++1i) {

cout.width(4) ;

cout << i << " |";
cout.width(7) ;

cout << i * i << " |";
cout.width(8) ;

cout << 1 * 1 * i;
cout << endl;

}

return O;

}

Here is the output:

Root | Square | Cube
1| 1 1
2 | 4 | 8
3| 9 | 27
4 | 16 | 64
5 | 25 | 125

388

Herb Schildt's C++ Programming Cookbook

6 | 36 | 216
7 | 49 | 343
8 | 64 | 512
9 | 81 | 729
10 | 100 | 1000

Options and Alternatives
There are overloaded forms of width() and fill(), which are shown here:

char fill() const
streamsize width() const

These forms obtain, but do not change, the current settings.
Another way to set a stream's field width and fill character is to use the I/O manipulators
setw and setfill. They are described in Use I/O Manipulators to Format Data.

Key Ingredients

Headers Classes Functions and Flags

<ios> ios_base fmtflags setf(fmtflags flags)
fmtflags setf(fmtflags flags1, flags2)
adjustfield
internal
left
right

Typically, output is rightjustified by default. This means that when a field width exceeds
the size of the data, padding is added to the beginning of the field to achieve the desired
width. (See the preceding recipe for details on field widths and the fill character.) You can
change this behavior by setting either the left or internal format flag. You can return to right
justifcation by setting the right flag. This recipe shows the process.

Step-by-Step

To set the justification involves these steps:

1. To leftjustify output, clear the flags specified by adjustfield and then set the left flag.

2. To right-justify output, clear the flags specified by adjustfield and then set the right
flag.

3. To use internal padding to justify numeric values, clear the flags specified by
adjustfield and then set the internal flag.

Chapter 6: Formatting Data 389

Discussion

There are three format flags that affect justification: right, left, and internal. Collectively, these
flags can be referred to by the value adjustfield. In general, only one of these flags should be
set at any time. Therefore, when changing the justification method, you must turn on the flag
you want and ensure that the other two flags are cleared. This is easily accomplished by use of
the two-argument form of setf() and the adjustfield value. You will see an example of this
shortly. (See Access the Format Flags via Stream Member Functions for a description of setting the
format flags with setf().)

As a general rule, output is rightjustified by default. This means that if the field width
is larger than the data, padding will occur to the left of the data. For example, consider this
sequence:

cout << 12345678 << endl;
cout.width(8) ;
cout << "test" << endl;

It produces the following output:

12345678
test

When the string "test" is output in a field that is 8 characters wide, it is padded by 4
characters on the left, as the output shows.
To specify left justification, set the left format flag, as shown in this sequence:

cout.setf (ios::left, ios::adjustfield);
cout << 12345678 << endl;
cout.width(8) ;

cout << "test" << "|" << endl;

It produces this output:

12345678
test |

As you can see, the padding is added to the right of the data, rather than the left. This makes
the data line up on the left. Notice how the left flag is set by use of the two-argument form of
setf(). It first clears all of the flags referred to by adjustfield and then sets the left flag. This
ensures that only the left flag is set.

When outputting numeric data, you can cause padding to be inserted within portions of
the format by turning on the internal flag. For example, if you turn on the showpos flag
(which causes a + sign to be shown for positive values), then any padding will take place
between the + sign and the digits.

Example
The following program shows the justification format flags in action.

// Demonstrate the left, right, and internal format flags.

#include <iostream>

390 Herb Schildt's C++ Programming Cookbook

using namespace std;

int main ()

{

// Use default width.

cout << "Default format.\n";
cout << "|";

cout << 123.45 << "|" << "\n\n";

// Use default right justification
cout << "Right-justify in a field width of 12.\n";

cout << "|";
cout.width(12) ;
cout << 123.45 << "|" << "\n\n";

// Switch to left justification.
cout << "Left-justify in a field width of 12.\n";
cout.setf (ios::left, ios::adjustfield);

cout << "|";
cout.width(12) ;
cout << 123.45 << "|" << "\n\n";

// Turn on showpos, use left-justification.

cout << "Turning on showpos flag.\n";
cout.setf (ios: :showpos) ;

cout << "Left-justify set in a field width of 12 again.\n";

cout << "|";
cout.width(12) ;
cout << 123.45 << "|" << "\n\n";

// Now, use internal.

cout << "Turning on internal justification.\n";

cout.setf (ios::internal, ios::adjustfield);

cout << "Internal justification in a field width of 12.\n";

cout << "|";

cout.width(12) ;

cout << 123.45 << "|" << endl;
return 0;

}
The output is shown here:

Default format.
|123.45]|

Right-justify in a field width of 12.
| 123.45]|

Left-justify in a field width of 12.
|123.45 |

Chapter 6: Formatting Data 391

Turning on showpos flag.
Left-justify set in a field width of 12 again.
| +123.45 |

Turning on internal justification.
Internal justification in a field width of 12.
|+ 123.45]|

Options and Alternatives

You can set the justification mode by use of the I/O manipulators left, right, and internal.
They are described in Use I/O Manipulators to Format Data.

rd

Use |/0 Manipulators to Format Data

I Key Ingredients

Headers Classes Functions

<ios> end|
fixed
left
right
scientific
showpoint
showpos

<iomanip> resetiosflags(ios_base::fmtflags flags)
setprecision(int prec)
setw(int w)

C++ contains an extensive set of I/O manipulators that let you embed formatting directives
into an I/O expression. The manipulators are used to set or clear the format flags associated
with a stream. They also let you specify the field width, precision, and fill character. Thus,
they duplicate the functionality supplied by the stream member functions, providing a
convenient alternative that enables more compact code to be written.

There are several different manipulators defined by C++. This recipe shows how to use a
representative sample. Because all manipulators work in the same basic way, the techniques
presented here apply to all manipulators.

392 Herb Schildt's C++ Programming Cookbook

Step-by-Step

To use an I/O manipulator involves these steps:

1. To use a parameterized manipulator, include the <iomanip> header. Most of the
parameterless manipulators are defined by <ios>, which is normally included by
another I/O header, such as <iostream>.

2. To invoke a manipulator, embed its name within an output expression. If the
manipulator takes an argument, then specify that argument within parentheses.
Otherwise, simply use the name of the manipulator without any parentheses.

Discussion

There are two basic types of I/O manipulators: parameterless and parameterized. We will
begin with the parameterless manipulators. The parameterless manipulators that operate on
output streams are shown here:

Manipulator Purpose

boolalpha Turns on boolalpha flag.

endl Outputs a newline.

ends Outputs a null.

dec Turns on dec flag. Turns off the hex and oct flags.
fixed Turns on fixed flag. Turns off the scientific flag.

flush Flushes the stream.

hex Turns on hex flag. Turns off the dec and oct flags.
internal Turns on internal flag. Turns off the left and right flags.
left Turns on left flag. Turns off the right and internal flags.
noboolalpha Turns off boolalpha flag.

noshowbase Turns off showbase flag.

noshowpoint

Turns off showpoint flag.

noshowpos Turns off showpos flag.

nounitbuf Turns off unitbuf flag.

nouppercase Turns off uppercase flag.

oct Turns on oct flag. Turns off the dec and hex flags.

right Turns on right flag. Turns off the left and internal flags.
scientific Turns on scientific flag. Turns off the fixed flag.
showbase Turns on showbase flag.

showpoint Turns on showpoint flag.

showpos Turns on showpos flag.

unitbuf Turns on unitbuf flag.

uppercase

Turns on uppercase flag.

Chapter 6: Formatting Data 393

Most of these manipulators are declared in the <ios> header (which is automatically
included by other headers, such as <iostream>). However, endl, ends, and flush are
declared in <ostream>.

The parameterless output manipulators control the setting of the various format flags.
For example, to turn on the showpoint flag, use the showpoint manipulator. To turn off the
showpoint flag, use the noshowpoint manipulator. Notice that the manipulators that
control the number base, justification, and floating-point format automatically select the
specified format, turning off the other flags in the group. For example, the hex manipulator
automatically turns on the hex flag and turns off the dec and oct flags. Therefore, to select
hexadecimal output, you simply include the hex manipulator. The dec and oct flags are
automatically cleared.

To use a parameterized manipulator, you must include <iomanip>. It defines the
following manipulators:

resetiosflags (ios_base::fmtflags f) Turn off the flags specified in f.
setbase(int base) Set the number base to base.
seftfill(int ch) Set the fill character to ch.
setiosflags(ios_base::fmtflags f) Turn on the flags specified in f.
setprecision (int p) Set the number of digits of precision.
setw(int w) Set the field width to w.

For example, to set the field width to 20, embed setw(20) in an output expression. As is the
case with the width() function, setw affects only the width of the next item to be output.
You can use the setiosflags() and resetiosflags() to set or clear any arbitrary combination
of flags.

I/0 manipulators are embedded in an I/O expression. For example:

cout << setprecision(8) << left << 123.23;

This sets the precision to 8, turns on the left-justification flag, and then outputs the number
123.23.

Although the manipulators provide the same functionality as the setf(), unsetf(),
width(), precision(), and fill() member functions described in the preceding recipes, they
do so in a more streamlined fashion. For example, consider this expression:

cout << setw(1l2) << fixed << showpos << 98.6 << setw(1l0) << avg;

In a single line, it sets the field width to 12, turns on the fixed and showpos flags, and then
outputs the number 98.6. It then sets the field width to 10 and outputs the value of avg. The
same result can be obtained by use of stream member functions, but in a less compact form:

cout.width(12) ;

cout.setf (ios::fixed, ios::floatfield) ;
cout.setf (showpos) ;

cout << 98.6;

cout.width(10) ;

cout << avg;

394

Herb Schildt's C++ Programming Cookbook

Example

The following example shows several of the I/O manipulators in action.
// Demonstrate several I/0 manipulators.

#include <iostream>
#include <iomanip>

using namespace std;
int main()

cout << "Default format: " << 123.123456789 << endl;

cout << "Fixed format with precision of 7: ";
cout << setprecision(7) << fixed << 123.123456789 << endl;

cout << "Scientific format with precision of 7: ";
cout << scientific << 123.123456789 << endl;

cout << "Return to default format: ";
cout << resetiosflags(ios::floatfield) << setprecision(6)

<< 123.123456789 << "\n\n";

cout << "Use a field width of 20:\n";

cout << "|" << setw(20) << "Testing" << "|\n\n";
cout << "Use a field width of 20 with left justification:\n";
cout << "|" << setw(20) << left << "Testing" << "[\n\n";

cout << "Returning to right justification.\n\n" << right;

cout << "Booleans in both formats: ";

cout << true << " " << false << " " << boolalpha
<< true << " " << false << "\n\n";
cout << "Default: " << 10.0 << endl;

cout << "After setting the showpos and showpoint flags: ";
cout << showpos << showpoint << 10.0 << "\n\n";

cout << "The setw manipulator is very useful when repeated field\n"
<< "widths must be specified. For example:\n";

cout << setw(8) << "this" << endl << setw(8) << "is" << endl
<< setw(8) << "a" << endl << setw(8) << "column" << endl
<< setw(8) << "of" << endl << setw(8) << "words";

return 0;

}

The output is shown here:

Default format: 123.123
Fixed format with precision of 7: 123.1234568
Scientific format with precision of 7: 1.2312346e+002

Chapter 6: Formatting Data 395

Return to default format: 123.123

Use a field width of 20:
| Testing|

Use a field width of 20 with left justification:
| Testing |

Returning to right justification.
Booleans in both formats: 1 0 true false

Default: 10
After setting the showpos and showpoint flags: +10.0000

The setw manipulator is very useful when repeated field
widths must be specified. For example:

this
is
a
column
of
words

Options and Alternatives

You can set the format flags by making explicit calls to setf() on the stream. You can set the
width, precision, and fill character by calling width(), precision(), and £ill() on the stream.
This approach is described by the preceding recipes.

You can create your own manipulators. The techniques required to do so are described
in Chapter 5.

”~

Format Numeric Values for a Locale

I Key Ingredients
Headers Classes Functions
<ios> ios_base locale imbue(const &locale newloc)
<locale> locale

When numeric values are output to a stream, they are automatically formatted by the
num_put facet defined by that stream's current locale. Therefore, to format a numeric value
for a specific locale is easy: Simply change the stream's locale to the one desired. The
num_put facet for the new locale will automatically be used. This recipe shows the process.

396

Herb Schildt's C++ Programming Cookbook

Step-by-Step

To format numbers relative to a specific locale involves these steps:

1. Create a locale object that represents the desired locale.

2. Set the stream's locale to the one created in Step 1 by calling imbue().

Discussion
Instructions for setting a stream's locale are presented in Obtain or Set a Stream’s Locale in
Chapter 5. They are summarized here.

The current locale defines several aspects of a numeric format, including the characters
used for the decimal point and thousands separator. As a general rule, the default locale is
the "C" locale. This locale defines a standard C/C++ environment, which uses the period as
the decimal point and provides little other formatting. For many applications, the default
locale is fine. However, in cases in which you want numeric values to be displayed in a
format compatible with the user's locale, you will need to specify that locale explicitly.

One way to construct a locale instance is to use this locale constructor:

explicit locale(const char *name)

Here, name specifies the name of the locale, such as German, Spanish_Spain, or US. If name
does not represent a valid locale, then a runtime_error exception is thrown. What constitutes
a valid locale name may (probably will) vary from compiler to compiler. The examples
shown in this book work with Microsoft's Visual C++, and might work for other compilers,
but you should consult your compiler's documentation for details.

To set a stream's locale, call imbue() on the stream. It is shown here:

locale imbue(const locale &newloc)

The invoking stream's locale is set to newloc, and the old locale is returned.

Example

The following example shows the way different locales affect the format of numbers. The
program begins by displaying a value in the default format (which is typically determined
by the C locale). It then specifies the English locale and displays the same value. Finally, it
uses the German locale. Notice that in English, the thousands separator is a comma and the
decimal point is a period. In German, this is reversed, with the thousands separator being
the period and the decimal point being the comma. Also notice that the fixed flag and the
precision are set, but these are not affected by the locale setting.

// Format numeric values relative to a locale.
#include <iostream>

#include <locale>

#include <iomanip>

using namespace std;

int main()

Chapter 6: Formatting Data 397

// Use a fixed format with 2 decimal places.
cout << fixed << setprecision(2);

cout << "Default format: " << 12345678.12 << "\n\n";

// Set the locale to English.
locale eloc("English") ;
cout . imbue (eloc) ;

cout << "English format: " << 12345678.12 << "\n\n";

locale gloc("German") ;
cout . imbue (gloc) ;

cout << "German format: " << 12345678.12 << "\n\n";
return 0;

}

The output is shown here:

Default format: 12345678.12
English format: 12,345,678.12

German format: 12.345.678,12

Options and Alternatives

You can format numeric values in a monetary format by using the money_put facet. It
automatically uses the current locale. See Format Monetary Values Using the money_put Facet
for details.

Although the preceding example, and many of the examples in this chapter, use cout as
the target stream, the same basic approach works with all output streams. For example, the
following sequence creates an ofstream called fout and connects it to a file called test.dat. It
then turns on the fixed flag and sets the precision to 2. Next, it sets the locale to German.
Finally, it outputs 12345678.12 to fout.

ofstream fout ("test.dat") ;
fout.imbue (locale ("German")) ;
fout << fixed << setprecision(2);
fout << 12345678.12;

After this sequence executes, test.dat will contain the following:

12.345.678,12

As you can see, it is formatted for German.

Although using the formatted I/O operator << is the easiest (and most often the best)
way to format numeric output, you can use the num_put facet directly. This is done by first
obtaining a reference to a num_put facet for the current locale by calling use_facet(), which
is described in Facet Overview near the start of this chapter. Then, using this reference, call
put() to format a value and output it to a stream.

398 Herb Schildt's C++ Programming Cookbook

The num_put facet is declared like this:

template <class CharT, class Outltr = ostreambuf_iterator<CharT> >
class num_put : public locale::facet{ // ...

CharT specifies the type of characters being operated upon. Outltr specifies the iterator
type that is used to write formatted data. Notice that it defaults to ostreambuf_iterator.

The put() function defined by num_put has several versions. Here is one. It formats
a double value.

iter_type put(iter_type strm_itr, ios_base &strm,
char_type fillchar, double val) const

An iterator to the output stream is passed in strm_itr. The type iter_type is a typedef for the
iterator type. By default, this type is ostreambuf_iterator. There is an automatic conversion
to this type from any basic_ostream object, so typically, you will simply pass the stream
being acted upon. Pass a reference to the output stream in strm. Its flag settings, precision,
and width are used to govern the format. The fill character is passed in fillchar. The value to
be formatted is passed in val.

Putting together the pieces, the following sequence uses num_put to display the number
1024.256 in fixed format, with a precision of 2 and a width of 20, in the current locale.

cout << fixed << setprecision(2) << setw(20);
const num put<char> &np = use_ facet<num put<char> >(cout.getloc()) ;
np.put (cout, cout, ' ', 1024.256);

As you can see, this involves much more effort than does the << operator and gains nothing
for the effort.

You can read a number in a locale-sensitive manner by using the num_get facet. It
defines the get() function that reads a number in its stream form.

”~

Format Monetary Values Using the money_put Facet

I Key Ingredients
Headers Classes Functions
<ios> ios_base locale getloc() const
<ios> ios locale imbue(const &locale newloc)
<locale> locale template <class Facet>

const Facet &use_facet(const locale &loc)

<locale> money_put iter_type put(iter_type strm_itr,
bool int_cur_sym,
ios_base &strm,
char_type fillchar,
long double val) const

Chapter 6: Formatting Data 399

As it relates to formatting, perhaps the single most frequently asked "How-To" question is
"How do I display monetary values?" Because the default numeric format is not designed
for this purpose, the proper approach is a source of much confusion. Fortunately, the
solution is quite easy: Simply use the money_put facet defined by the C++ localization
library. Doing so automatically produces the correct format for the current locale. This
recipe shows the process.

Step-by-Step

To display a monetary value via the money_put facet involves these steps:

1. Construct a locale object that represents the locale for which the monetary value
will be formatted.

2. Set the locale by calling imbue() on the stream that will be receiving the formatted
output. Pass imbue() the locale object from Step 1.

3. Obtain the money_put facet by calling use_facet(), specifying the locale from
which to obtain the facet. In general, this will be the current locale used by the
output stream. You can obtain this locale by calling getloc() on the stream.

4. Format the data by calling put() on the object returned by use_facet(), specifying
the stream to which the output will be written.

Discussion

A general overview of the C++ localization subsystem was presented near the start of this
chapter. The imbue() and getloc() functions are described in Obtain or Set a Stream’s Locale
in Chapter 5. The imbue() method is also summarized by the preceding recipe. Recall that
imbue() sets a stream's locale.

The money_put facet is declared as shown here:

template <class CharT, class Outltr = ostreambuf_iterator<CharT> >
class money_put : public locale::facet { // ...

CharT specifies the type of characters being operated upon. Outltr specifies the iterator
type that is used to write formatted data. Notice that it defaults to ostreambuf_iterator.

To obtain the money_put facet, you must call use_facet(). This function is described in
Facet Overview near the start of this chapter. Recall that it is a global generic function defined
by <locale>, with the following prototype:

template <class Facet> const Facet &use_facet(const locale &loc)

The template parameter Facet specifies the facet, which will be money_put in this case. The
locale is passed via loc. A reference to the facet is returned. Thus, use_facet() obtains a
specific version of the facet tailored to the locale. A bad_cast exception is thrown if the
desired facet is not available. In general, the predefined facets, including money_put, will
be available.

Usually, the locale instance passed to use_facet() will be the one used by the output
stream to which the facet will be applied. You can obtain a stream's current locale by calling
getloc() on the stream. It is shown here:

locale getloc() const

400

Herb Schildt's C++ Programming Cookbook

It returns the locale object associated with the stream.
Using the facet returned by use_facet(), you can format a monetary value by calling
put(). It has two forms. The one used by this recipe is shown here:

iter_type put(iter_type strm_itr, bool int_cur_sym, ios_base &strm,
char_type fillchar, long double val) const

An iterator to the output stream is passed in strm_itr. The type iter_type is a typedef for the
iterator type. By default, this type is ostreambuf_iterator. There is an automatic conversion
to this type from any basic_ostream object, so typically, you will simply pass the stream
being acted upon. If the currency symbol is to be shown in its international form, pass true
to int_cur_sym. Pass false to use the local symbol. Pass a reference to the output stream in
strm. If its showbase flag is set, then the currency symbol will be shown. The fill character is
passed in fillchar. The value to be formatted is passed in val. The put() function returns an
iterator that points one position past the last character output.

The one peculiarity associated with money_put is that it operates on data that does not
contain a decimal point. For example, the value 1724.89 is passed to put() as 172489. The
money formatter automatically adds the comma and decimal point. For US dollars, it is
transformed into 1,724.89. If you have enabled the domestic currency symbol, then the
result is $1,724.89.

Example

The following example shows how to use money_put.
// Use money put to output monetary values.

#include <iostream>
#include <locales>

using namespace std;

int main()

{

double balance = 5467.87;

locale usloc("English US") ;
locale gloc ("German Germany") ;

// Set showbase flag so that currency symbol is displayed.
cout << showbase;

cout << "Money format for US dollars:\n";
cout . imbue (usloc) ;
const money put<char> &us_mon =
use_ facet<money put<char> >(cout.getloc());

us_mon.put (cout, false, cout, ' ', "123456");
cout << endl;
us_mon.put (cout, true, cout, ' ', -299);

cout << endl;

Chapter 6: Formatting Data 401

us_mon.put (cout, false, cout, ' ', balance * 100);
cout << "\n\n";

cout << "Now show money in international German format:\n";
cout . imbue (gloc) ;
const money put<char> &g mon =

use_facet<money put<char> >(cout.getloc());

g mon.put (cout, true, cout, ' ', 123456);

cout << endl;

g mon.put (cout, true, cout, ' ', -299);

cout << endl;

g mon.put (cout, true, cout, ' ', balance * 100);
return 0;

}
The output is shown here:

Money format for US dollars:
$1,234.56
USD-2.99
$5,467.87

Now show money in international German format:
EUR1.234,56

EUR-2,99

EUR5.467,87

Options and Alternatives
There is a second form of put() that formats a string version of the value. It is shown here:

iter_type put(iter_type strm_itr, bool int_cur_sym, ios_base &strmflags,
char_type fillchar, string &strval) const

It works just like the first version, except that the value to be formatted is passed as a string
in stroal.

As explained, if you request a facet that is not available, then a bad_cast exception is
thrown. To avoid this possibility, you can determine if a facet is available for a given locale
by calling has_facet(). This is a global template function defined by <locale>. It is shown
here:

template <class Facet> bool has_facet(const locale &loc) throw()

It returns true if the specified facet is available and false otherwise. In general, the standard
facets will always be available, but custom facets may not be. In either case, you may want
to use has_facet() to confirm that a facet can be used. Doing so can avoid an exception.

You can read formatted monetary values by using the money_get facet. It defines the
function get(), which reads a currency value in its string form.

402 Herb Schildt's C++ Programming Cookbhook

”~

Use the moneypunct and numpunct Facets

I Key Ingredients
Headers Classes Functions
<locale> moneypunct string_type cur_symbol() const

char_type decimal_point() const
int frac_digits() const

char_type thousands_sep() const
string grouping() const

<locale> numpunct char_type decimal_point() const
char_type thousands_sep() const
string grouping() const

Although formatting numeric values via num_put and monetary values via money_put is
usually the best option, you can take control of the process if you like. The key is to obtain
the punctuation and rules used to format monetary and numeric values relative to a locale.
This punctuation includes the currency symbol, the thousands separator, and the decimal
point. The rules include the number of fractional digits displayed and the number of digits
in a group. Both are available through the moneypunct and numpunct facets. This recipe
shows how to obtain them.

Step-by-Step
To use the numpunct facet involves these steps:
1. Obtain the numpunct facet for a specified locale by calling use_facet(). Use this

facet to obtain the numeric punctuation and rules for the locale as described in the
following steps.

2. Obtain the decimal point character by calling decimal_point().
3. Obtain the thousands separator by calling thousands_sep().
4. Obtain the rule that governs digit groupings by calling grouping().

To use the moneypunct facet involves these steps:

1. Obtain the moneypunct facet for a specified locale by calling use_facet(). Use this
facet to obtain the numeric punctuation and rules for the locale as described in the
following steps.

2. Obtain the currency symbol by calling cur_symbol().
3. Obtain the decimal point character by calling decimal_point().

4. Obtain the thousands separator by calling thousands_sep().

Chapter 6: Formatting Data

5. Obtain the number of fractional digits used to represent monetary values by calling
frac_digits().

6. Obtain the rule that governs digit groupings by calling grouping().

Discussion

The punctuation and rules for numeric values are encapsulated within the numpunct facet.
It is declared as shown here:

template <class CharT> class numpunct : public locale::facet { // ...

The CharT specifies the type of characters being operated upon. Like all facets, it inherits
locale:facet.

You can obtain a reference to a numpunct facet by calling use_facet(), specifying
numpunct as the facet to obtain. The use_facet() function is defined globally by <locale>,
as described in the Facet Overview. The following sequence shows how to use it to obtain
a numpunct facet for the locale currently used by cout:

const numpunct<char> &numpunct = use_facet<numpunct<char> >(cout.getloc()) ;

Given a reference to the numpunct facet, you can obtain the various punctuation and
rules that relate to numeric values. Each value is tailored to the facet's locale. These items
are available through functions. The ones used by this recipe are shown here:

Function Description

char_type decimal_point() const Returns the character used as the decimal point.

char_type thousands_sep() const Returns the character used to separate (i.e., group)
thousands.

string grouping() const Returns rules that define the digit groupings.

Here, char_type is a typedef for the type of character, which will be char for char-based
streams.

The punctuation and rules for monetary values are encapsulated within the
moneypunct facet. It is declared as shown here:

template <class CharT, bool Intl = false>
class moneypunct : public locale::facet, public money_base { // ...

The CharT specifies the type of characters being operated upon. The Intl type indicates
whether international or local formats are used. The default is local. Like all facets, it
inherits locale::facet. The money_base class defines aspects of monetary formats that are
dependent upon type parameters. It is described more fully in the Options and Alternatives
section for this recipe.

As is the case with numpunct, a reference to moneypunct is obtained by calling
use_facet(). Here is an example:

const moneypunct<char> &us moneypunct = use_ facet<moneypunct<chars
> (cout.getloc()) ;

This statement obtains the moneypunct facet for the locale used by cout.

403

404 Herb Schildt's C++ Programming Cookbook

Given a reference to the moneypunct facet, you can obtain the various punctuation and
rules that relate to numeric values by calling functions through the reference. Each value is
tailored to the facet's locale. The ones used by this recipe are shown here:

Function Description

string_type cur_symbol() const Returns the character(s) used as the currency symbol.

char_type decimal_point() const Returns the character used as the decimal point.

int frac_digits() const Returns the number of fraction digits normally
displayed for monetary values.

char_type thousands_sep() const Returns the character used to separate (i.e., group)
thousands.

string grouping() const Returns rules that define the digit groupings.

Here, char_type is a typedef for the type of character, which will be char for char-based
streams, and string_type is a typedef for the type of string, which will be string for
char-based streams.

The value returned by grouping() is the same for both numpunct and moneypunct. It
is a string value in which the unicode value of each character in the string represents the
number of digits in a group, moving from right to left, and beginning with the first group to
the left of the decimal point. If the size of the specific group is not specified, the previous
group size is used. Therefore, if the group sizes are all the same, then only one value is
specified. Remember, it is the unicode value of the character that is used, not its human-
readable digit. Therefore, the character "\003' (not '3") represents 3 digits.

Example

The following example shows how to use moneypunct and numpunct to obtain the
punctuation and grouping rules for the United States:

// Demonstrate monetary and numeric punctuation and grouping.

#include <iostream>
#include <locales>

using namespace std;

int main()

{

// Create a locale for US English.
locale usloc("English US") ;

// Set the locale of cout to US English.
cout . imbue (usloc) ;

// Get a moneypunct facet for cout.
const moneypunct<chars> &us monpunct =
use_ facet<moneypunct<char> > (cout.getloc()) ;

cout << "Monetary punctuation for US:\n";
cout << " Currency symbol: " << us_monpunct.curr symbol() << endl;

Chapter 6:

Formatting Data

cout << " Decimal point: " << us_monpunct.decimal point () << endl;
cout << " Thousands separator: " << us_monpunct.thousands_sep() << endl;
cout << " Fraction digits: " << us_monpunct.frac digits() << endl;
cout << " Number of grouping rules: "
<< us_monpunct.grouping() .size() << endl;
for (unsigned i=0; i < us_monpunct.grouping() .size(); ++1)
cout << Size of group " << i << ": "

<< (int)us_monpunct.grouping() [0] << endl;
cout << endl;
// Get a numpunct facet for cout.
const numpunct<chars> &us numpunct =

use_ facet<numpunct<char> >(cout.getloc()) ;
cout << "Numeric punctuation for US:\n";
cout << " Decimal point: " << us_monpunct.decimal point () << endl;
cout << " Thousands separator: " << us_monpunct.thousands sep() << endl;
cout << " Number of grouping rules: "

<< us_monpunct.grouping() .size() << endl;
for (unsigned i=0; i < us_monpunct.grouping() .size(); ++1)
cout << Size of group " << i << ": "

<< (int)us_monpunct.grouping() [0] << endl;

return 0;

}

The output is shown here:

Monetary punctuation for US:

Currency symbol: $
Decimal point:

Thousands separator:

Fraction digits: 2

Number of grouping rules:

Size of group 0: 3

Numeric punctuation for US:

Decimal point:

Thousands separator:
Number of grouping rules:

Size of group 0: 3

Options and Alternatives

1

i

1

1

The numpunct facet defines the functions truename() and falsename(), shown here:

string_type truename() const

string_type falsename() const

405

406

Herb Schildt's C++ Programming Cookbook

They return the names for true and false relative to the specified locale.
The moneypunct facet lets you obtain the signs used to indicate positive and negative
monetary values by calling the functions positive_sign() and negative_sign(), shown here:

string_type positive_sign() const
string_type negative_sign() const

Notice that a string is returned, rather than a single character. This allows for multi-
character signs.

Using moneypunct, you can also obtain patterns that represent the positive and negative
formats by calling pos_format() and neg_format(), respectively. They are shown here:

pattern pos_format() const
pattern neg_format() const

Each returns a pattern object that describes the indicated format.
The pattern type is a struct defined within the money_base class. The money_base class
is a base class for moneypunct. The money_base class is shown here:

class money base {
public:
enum part { none, space, symbol, sign, value };
struct pattern {
char field[4];

Vi
Vi

Each element in field contains a part value. (The C++ Standard states that an array of char,
rather than an array of part, is used for field "purely for efficiency.") Each element of pattern
indicates what part of the money format must appear at that point, with the first part being
in field[0], the second part in field[1], and so on. Here is what each enumeration constant
means:

none No corresponding output
space A space

symbol The currency symbol

sign The positive or negative sign
value The value

For example, assuming the previous program, the following sequence displays the negative
pattern:

// Show the negative numeric pattern.
for(int 1=0; 1 < 4; ++1)
switch (us_monpunct.neg_format () .field[i]) {
case money base::none: cout << "none ";
break;

Chapter 6: Formatting Data 407

case money base::value: cout << "value ";
break;

case money_base::space: cout << "space ";
break;

case money base::symbol: cout << "symbol ";
break;

case money base::sign: cout << "sign ";
break;

}

It produces the following output:

sign symbol value none

This indicates that a negative monetary value starts with a sign, followed by the currency
symbol, and finally the value.

”~

Format Time and Date Using the time_put Facet

I Key Ingredients
Headers Classes Functions
<ctime> struct tm &localtime(const time_t *time)
time_t time(time_t *t_ptr)
<ios> ios_base locale getloc() const
<ios> ios locale imbue(const &locale newloc)
<locale> locale template <class Facet>

const Facet &use_facet(const locale &loc)

<locale> time_put iter_type put(iter_type strm_itr,
ios_base ¬_used,
char_type fillchar,
const tm *t,
const char_type *pattern_start,
const char_type *pattern_end) const

If "How do I display monetary values?" is the most commonly asked formatting question,
the second most common is "How do I display the time and date?" Although conceptually
easy, formatting the time and date involves more work than you might first think. The
trouble is twofold. First, the time and date formats are sensitive to the locale. Therefore, there
is no universal format that will work in all cases. Second, there are many ways in which the
time and date can be displayed. As a result, there are many options to choose from.

408

Herb Schildt's C++ Programming Cookbook

In general, there are two ways to format the date and time using C++. The first is to call
the C-based strftime() function. It formats the date and time based on the global locale. (See
Format Time and Date Using strftime() for details.) The second approach is defined by C++
and uses the time_put facet defined by the localization subsystem. Using time_put offers
one major advantage: It lets you format the time and date relative to the locale of a specific
stream, rather than the global locale used by strftime(). It is also integrated with C++'s
other formatting facets, such as money_put. For these reasons, formatting date and time by
use of time_put is the recommended approach for most applications. This recipe shows
how to put it into action.

Step-by-Step

To format the time and date using the time_put facet involves these steps:

1. Construct a locale object that represents the locale for which the time and date will
be formatted.

2. Set the locale by calling imbue() on the stream that will be receiving the formatted
output. Pass imbue() the locale object from Step 1.

3. Obtain the time_put facet by calling use_facet(), specifying the locale from which
to obtain the facet. In general, this will be the current locale used by the output
stream. You can obtain this locale by calling getloc() on the stream.

4. Obtain a tm pointer that points to the time to be formatted. One way to obtain this
pointer is to call localtime(). It returns the local time as supplied by the computer.

5. Format the time and date by calling put() on the object returned by use_facet(),
specifying the stream to which the output will be written.

Discussion
A general overview of the C++ localization subsystem is given near the start of this chapter.
The imbue() and getloc() functions are described in Obtain or Set a Stream’s Locale in
Chapter 5. The imbue() and getloc() methods are also summarized by the preceding two
recipes.

To format the time and date, you will use the time_put facet. It is declared like this:

template <class CharT, class Outltr = ostreambuf_iterator<CharT> >
class time_put : public locale::facet{ // ...

CharT specifies the type of characters being operated upon. Outltr specifies the iterator
type that is used to write formatted data. Notice that it defaults to ostreambuf_iterator.

To obtain the time_put facet, you must call use_facet(). This function is described in
Facet Overview near the start of this chapter. Recall that it is a global generic function defined
by <locale>, with the following prototype:

template <class Facet> const Facet &use_facet(const locale &loc)

The template parameter Facet specifies the facet, which will be time_put in this case. The
locale is passed via loc. A reference to the facet is returned. A bad_cast exception is thrown if
the desired facet is not available. In general, the predefined facets, including time_put, will
be available.

Chapter 6: Formatting Data 409

Using the time_put facet obtained from use_facet(), you can format a time value by
calling put(). It has two forms. The one used by this recipe is shown here:

iter_type put(iter_type strm_itr, ios_base ¬_used, char_type fillchar,
const tm *t, const char_type *pattern_start,
const char_type *pattern_end) const

An iterator to the output stream is passed in strm_itr. The type iter_type is a typedef for the
iterator type. By default, this type is ostreambuf_iterator. There is an automatic conversion
to this type from any basic_ostream object, so typically, you will simply pass the stream
being acted upon. The not_used parameter is not used. (You can pass a reference to the
output stream as a placeholder.) The fill character is passed in fillchar. A pointer to a tm
structure that contains the time and date is passed in t. A pointer to the start of a string that
defines a pattern that will be used to format the time and date is passed in pattern_start. A
pointer to the end of the pattern string is passed in pattern_end. The type char_type is a
typedef for the character type. For char-based strings, which are used by this book, this
char_type is char.

The tm structure is defined in <ctime> and is inherited from C. It stores what is called
the "broken-down" form of the time and date. It is shown here:

struct tm {
int tm sec; // seconds, 0-61
int tm min; // minutes, 0-59
int tm hour; // hours, 0-23
int tm mday; // day of the month, 1-31
int tm mon; // months since Jan, 0-11
int tm year; // years from 1900
int tm wday; // days since Sunday, 0-6
int tm yday; // days since Jan 1, 0-365
int tm isdst // Daylight Saving Time indicator

}

You can construct a tm object by manually setting its members, but usually you won't. Most
often, you will simply obtain a tm object that contains the current time and date by using a
function defined by <ctime>. The one used by this recipe is localtime() and it is shown
here:

struct tm *localtime(const time_t *time)

It takes the time encoded as a time_t value and returns a pointer to a tm structure that
contains the time broken down into its individual components. The time is represented in
local time. The tm structure that is pointed to by the pointer returned by localtime() is
statically allocated and is overwritten each time the function is called. If you want to save
the contents of the structure, you must copy it elsewhere.

You can obtain a time_t value in several ways. The approach used by this recipe is to
call time(). It is another function defined by <ctime> and it obtains the current system time.
It is shown here:

time_t time(time_t *t_ptr)

40

Herb Schildt's C++ Programming Cookbook

It returns the current system time. This is typically represented as the number of seconds
since January 1, 1970. If the system has no time, -1 is returned. The function can be called
either with a null pointer or with a pointer to a variable of type time_t. If the latter is used,
the variable pointed to by t_tpr will also be assigned the time.

In the put() function, the pattern string pointed to by pattern_start contains two types of
items. The first are normal characters, which are simply displayed as-is. The second are time
and date format specifiers, which determine what time and date components are displayed.
These format specifiers are the same as those used by the C legacy function strftime(). They
are listed in Table 6-1. (See Format Time and Date Using strftime().) The format specifiers
begin with a percent sign (%) and are followed by a format command. For example, %H
causes the hour to be displayed using a 24-hour clock. %Y causes the year to be displayed.
You can combine both regular characters and time/date specifiers in the same pattern. For
example,

char *custom pat = "Today's date is %x";

Assuming that the date is January 1, 2008, then this causes the following output:

Today's date is 1/1/2008

Example

The following example shows time_put in action. It displays the time and date in both
English and German.

// Output time and date using the time put facets

#include <iostream>
#include <locale>
#include <cstring>
#include <ctime>

using namespace std;

int main()
// Obtain the current system time.
time_t t = time (NULL) ;
tm *cur time = localtime(&t) ;

// Create US and German locales.
locale usloc("English US") ;
locale gloc ("German Germany") ;

// Set the locale to US and get the time_put facet for US.
cout . imbue (usloc) ;
const time put<char> &us_time =

use facet<time put<char> >(cout.getloc()) ;

// %c specifies the standard time and date pattern.
char *std pat = "%c";
char *std pat_end = std pat + strlen(std pat);

Chapter 6: Formatting Data 411

// The following custom pattern displays hours and minutes
// followed by the date.

char *custom pat = "%A %B %d, %Y %H:%M";

char *custom_pat_end = custom pat + strlen(custom pat);

cout << "Standard US time and date format: ";
us_time.put (cout, cout, ' ', cur_time, std pat, std pat_end);
cout << endl;

cout << "Custom US time and date format: ";
us_time.put (cout, cout, ' ', cur_time, custom pat, custom pat end) ;
cout << "\n\n";

// Set the locale to Germany and get the time put facet for Germany.
cout . imbue (gloc) ;
const time put<char> &g_time =

use_ facet<time put<char> >(cout.getloc()) ;

cout << "Standard German time and date format: ";
g time.put (cout, cout, ' ', cur_ time, std pat, std pat end);
cout << endl;

cout << "Custom German time and date format: ";
g time.put (cout, cout, ' ', cur time, custom pat, custom pat end) ;
cout << endl;

return O;

}
The output is shown here:

Standard US time and date format: 10/31/2007 9:27:45 AM
Custom US time and date format: Wednesday October 31, 2007 09:27

Standard German time and date format: 31.10.2007 09:27:45
Custom German time and date format: Mittwoch Oktober 31, 2007 09:27

Options and Alternatives

Another way to format the time and date is by using the strftime() function inherited from
the C language. If you are using the global locale, then strftime() is a bit easier to use than
the time_put facet. See Format Time and Date Using strftime() for details.

There is a second form of put() that lets you specify a single time/date format specifier.
It is shown here:

iter_type put(iter_type strm, ios_base ¬_used, char_type fillchar,
const tm *f, char fmt, char mod = 0) const

The first four parameters are the same as the first version. The format specifier is passed in
fmt, and an optional format modifier is passed in mod. Not all environments support
modifiers. If they are supported, they are implementation-defined. The function returns an
iterator to one past the last character written.

412 Herb Schildt's C++ Programming Cookbook

”~

Format Data into a String

I Key Ingredients
Headers Classes Functions
<sstream> ostringstream string str() const

Sometimes it is useful to construct in advance a string that contains formatted output. This
string can then be output when needed. This technique is especially useful when working in a
windowed environment, such as Windows, in which data is displayed by a control. In this
case, you often need to format the data before it is displayed. This is most easily accomplished
in C++ by using a string stream, such as ostringstream. Because all streams work the same, the
techniques described by the preceding recipes that write the formatted data to a stream such as
cout also work with string-based streams. Once you have constructed the formatted string, you
can display it using any mechanism that you choose. This recipe shows the process.

Step-by-Step

One way to format data to a string involves the following steps:

1. Create an ostringstream.

2. Set the format flags, precision, width, and fill character as needed.
3. Output data to the string stream.

4. To obtain the formatted string, call str().

Discussion

The string streams, including ostringstream, are described in Chapter 5. See Use the String
Streams for details on creating and using a string stream.

The format flags, precision, width, and fill character are set in a string stream in the same
way as they are set in any other C++ stream. For example, you can use the setf() function to
set the format flags. Use width(), precision(), and fill() to set the width, precision, and fill
character. Alternatively, you can use the I/O manipulators to set these items.

To create a formatted string, simply output to the string stream. When you want to use
the formatted string, call str() on the string stream to obtain the string. This string can then
be displayed, stored, or used however you like.

Example

The following example shows how to create a formatted string by use of a string stream.
Once the formatted string has been constructed, it is output in its entirety.

// Use a string stream to store formatted output in a string.
#include <iostream>

#include <sstreams>
#include <locale>

Chapter 6:

#include <iomanip>

using namespace std;

int main()

{

}

locale usloc("English US") ;

ostringstream ostr;

// Set showbase flag so that currency symbol is displayed.

ostr << showbase;

// Set the locale of ostr to US English.
ostr.imbue (usloc) ;

// Get a money put facet for ostr.
const money put<char> &us_mon =
use_facet<money put<char> >(ostr.getloc());

// Format a value in US dollars.
us_mon.put (ostr, false, ostr, ' ', "5498499");

cout << "Money formatted for US: ";
cout << ostr.str() << "\n\n";

// Give a new, empty string to ostr.
ostr.str(string()) ;

// Now, construct a table of circular areas.
ostr << setprecision(4) << showpoint << fixed << left;
ostr << "Diameter Area\n";

cout << "A table of circular areas.\n";
for(int i=1; i < 10; ++1i)
ostr << left << " " << getw(6) << 1 << setw(8)
<< right << i*3.1416 << endl;

// Display the formatted string.
cout << ostr.str();

return 0;

The output is shown here:

Money formatted for US: $54,984.99

A table of circular areas.

Diameter Area
1 3.1416
2 6.2832

3 9.4248

Formatting Data

a3

414 Herb Schildt's C++ Programming Cookbook

12.5664
15.7080
18.8496
21.9912
25.1328
28.2744

O W J o0 Ul b

Options and Alternatives

The C legacy function sprintf() offers another way to write formatted output to a string. It
is described in the Options and Alternatives section for the recipe Use printf() to Format Data.
Because of its potential for buffer overruns, and because the string streams offer a more
flexible alternative, sprintf() is not recommend for new code. It is included in this book
only because of its extensive use in legacy C code.

'd

Format Time and Date Using strftime

I Key Ingredients
Headers Classes Functions
<ctime> struct tm &localtime(const time_t *time)
size_t strftime(char *str, size_t maxsize,
const char *fmt,
const struct tm *t_ptr)

Although I recommend the use of the time_put facet for most time and date formatting,
there is an alternative that can be useful in some cases: the strftime() function. This function
is defined by C and is still supported by C++. Although it lacks some of the flexibility of the
time_put facet (described in an earlier recipe), it can be useful when you are displaying the
time and date for the global locale. This recipe shows the process.

Step-by-Step
Using strftime() to format the date and time involves these steps:
1. Obtain a tm pointer that points to the time to be formatted. For local time, this
pointer can be obtained by calling localtime().

2. Create a char array large enough to hold the formatted output. Remember to
include room for the null terminator.

3. To format the date and time, call strftime(), specifying the desired formats. You will
also pass in a pointer to the char array from Step 2 and the tm pointer from Step 1.

Chapter 6: Formatting Data 415

Discussion

The strftime() function formats the time and date, putting the result into a null-terminated
string. It requires the header <ctime> and has the prototype shown here:

size_t strftime(char *str, size_t maxsize, const char *fmt,
const struct tm *t_ptr)

The time to be formatted is in a tm structure pointed to by ¢_ptr. The format of the time and
date is specified by the string pointed to by fint. The formatted output is put into the string
pointed to by str. The result is null-terminated. A maximum of maxsize characters will be
placed into str. It returns the number of characters put into str (excluding the null terminator).
You must ensure that str points to an array large enough to hold the maximum output. Thus,
it must be at least maxsize elements long. Zero is returned if more than maxsize characters are
needed to hold the formatted result.

The strftime() function formats the time and date based on format specifiers. Each format
specifier begins with the percent sign (%) and is followed by a format command. The format
commands are used to specify the exact way various time and date information is represented.
Any other characters found in fmt (the format string) are copied into str unchanged. The time
and date are formatted according to the global locale, which is the "C" locale by default. The
format commands are shown in Table 6-1. Notice that many of the commands are case-sensitive.

To understand how the time and date formats work, let's work through a few examples.
Perhaps the most commonly used format is %c, which displays the time and date using a
standard format appropriate to the locale. The standard time and date formats can be used
separately by specifying %x (date) and %X (time). For example, this format string "%x %X"
causes the standard date and time to be displayed.

Although the standard formats are useful, you can take full control, using whatever
pieces of the time and/or date you want and in various forms. For example, "%H:%M"
displays the time, using only hours and minutes, in a 24-hour format. Notice that the hours
are separated from the minutes by a colon. As explained, any character in the format string
that is not part of a format specifier will be output as-is. Here is a popular date format: "%A,
%B %d %Y". It displays the day, month, and year using the long-name format, as in
Thursday, November 01 2007.

In strftime(), the t_ptr parameter points to an object of type tm that contains what is
referred to as the "broken-down" form of the time. The tm structure is also defined in <ctime>.
One way to obtain a tm object is to call the localtime() function. It returns a pointer to a tm
structure that contains the time represented as local time. You can obtain the current time by
calling time(). See Format Time and Date Using the time_put Facet for additional information
on tm, localtime(), and time().

Example

The following example shows the strftime() function in action:

#include <iostream>
#include <ctime>

using namespace std;

int main() {
char str[64];

416 Herb Schildt's C++ Programming Cookbook

Command Replaced By

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%C Standard date and time string

%d Day of month as a decimal (1-31)

%H Hour (0-23)

%l Hour (1-12)

%) Day of year as a decimal (1-366)

%m Month as decimal (1-12)

%M Minute as decimal (0-59)

%p Locale's equivalent of AM or PM

%S Second as decimal (0-61)

%U Week of year, Sunday being first day (0-53)
%W Weekday as a decimal (0-6, Sunday being 0)
%W Week of year, Monday being first day (0-53)
%X Standard date string

%X Standard time string

%y Year in decimal without century (0-99)

%Y Year including century as decimal

%Z Time zone name

%% The percent sign

TaBLe 6-1 The strftime() Format Specifiers

// Get the current system time.
time_t t = time (NULL) ;

// Show standard time and date string.
strftime (str, 64, "%c", localtime(&t));
cout << "Standard format: " << str << endl;

// Show a custom time and date string.
strftime(str, 64, "%A, %B %d %Y %I:%M %p", localtime(&t));

cout << "Custom format: " << str << endl;

return 0;

Chapter 6: Formatting Data 417

The sample output is shown here:

Standard format: 11/07/07 14:34:17
Custom format: Wednesday, November 07 2007 02:34 PM

Options and Alternatives

Some compilers support modifiers for the time and date format commands, but these are
implementation-dependent. For example, Microsoft's Visual C++ allows you to modify a
command with the #. The precise effect varies by command. For example, %#c causes the
standard time and date string to be displayed in its long form, with the names of the days of
the week and month spelled out. You will need to check your compiler's documentation for
modifiers that apply to your development environment.

The strftime() function uses the global locale defined by C to determine time and date
formats. You can change this locale by calling the C function setlocale(), shown here:

char *setlocale(int what, const char *loc)

The setlocale() function attempts to use the string specified by loc to set the locale parameters
as specified by what. The locale strings are implementation-dependent. Refer to your compiler's
documentation for the localization strings that it supports. If loc is null, setlocale() returns a
pointer to the current localization string. At the time of the call, what must be one of the
following macros:

LC_ALL LC_COLLATE LC_CTYPE
LC_MONETARY LC_NUMERIC LC_TIME

LC_ALL refers to all localization categories. LC_COLLATE affects the collating functions,
such as strcoll(). LC_CTYPE alters the way the character functions work. LC_MONETARY
determines the monetary format. LC_NUMERIC determines the numeric format. Finally,
LC_TIME determines the behavior of the strftime() function. The setlocale() function returns
a pointer to a string associated with the what parameter. To use setlocale(), you must include
<clocale>.

The following program reworks the example so that the time and date are displayed in
a form compatible with Germany. (The locale string is compatible with Visual C++. Your
compiler may require a different string.)

#include <iostream>
#include <ctime>
#include <clocale>

using namespace std;

int main() {
char str[64];

// Set the locale to Germany.
setlocale (LC_ALL, "German Germany") ;

418 Herb Schildt's C++ Programming Cookbook

// Get the current system time.
time_t t = time (NULL) ;

// Show standard time and date string.

strftime (str, 64, "%c", localtime(&t)) ;
cout << "Standard format: " << str << endl;

// Show a custom time and date string.
strftime (str, 64, "%$A, %B %Y %$I:%M %p", localtime(&t));
cout << "Custom format: " << str << endl;

return O;

}

The sample output is shown here:

Standard format: 01.11.2007 10:42:20
Custom format: Donnerstag, November 2007 10:42

Notice that the time and date now use German language and style.

Although strftime() occasionally offers a convenient alternative, in most cases, you will
want to use time_put for new code. The reason is that the C++ localization system is fully
integrated with C++ streams. Furthermore, each stream can have its own locale. The
strftime() function uses the global locale, which is a feature inherited from the C language.
The modern approach is for each stream to have its own locale.

./-

Use printf() to Format Data

Key Ingredients

Headers Classes Functions

<cstdio> int printf(const char *fmt, ...)

Although the use of facets such as num_put and money_put is the modern way to format
data, facets are probably not the first thing that springs to mind for most C++ programmers.
Instead, it is probably the printf() function. Incorporated into C++ as part of its C legacy,
printf() is arguably the most widely used, widely understood, and widely copied formatted
output function in existence. Even programmers with little knowledge of C or C++ have
heard of it. It has also been added to the Java language. Although the formatting flags, functions,
and facets defined for C++ streams essentially duplicate its functionality, printf()-style
formatting is still widely employed because it offers a compact way to create nearly any type
of numeric or string format. It is also used extensively in legacy C code. Frankly, no
programmer can be considered a master of C++ without knowing how to handle printf().
Before we begin, one important point needs to be made: printf() is just one of a family
of functions that all work in essentially the same way. The others described in this recipe are

Chapter 6: Formatting Data 419

sprintf() and fprintf(). All three format data through the use of format specifiers. The
difference between these functions is the destination for the formatted output. In the case of
printf(), the target is standard out, which is normally the console. For sprintf(), the target
is a string, and for fprintf(), it is a file (as specified by a C-style file pointer, not a C++
stream). Except for where formatted data is sent, the information presented in this recipe
applies to all three.

NOTE Most new code should use C++ features for formatting, not printf(). C++ formatting is
integrated with C++ streams and offers better support for internationalization. Also, printf()
formats data relative to the global locale, not a stream-based locale. Therefore, the C++ approach
is more flexible. Finally, it is usually better to not mix output to cout with output from printf().
As a general rule, for any given stream, you should use either C++ I/O or C I/O. Therefore, if
you want to use printf() in a program, that program should not also use cout.

Step-by-Step

Formatting data via printf() involves the following steps:

1. Create a format string that contains the desired format specifiers.
2. Pass the format string as the first argument to printf().

3. Beginning with the second argument to printf(), pass the data you want to format.
There must be the same number of arguments as there are format specifiers, and
they must be in the same order.

Discussion

The printf() function writes formatted output to the standard output device, which is the
console by default. It is shown here:

int printf(const char *fmt, arg-list)

It formats the data passed in arg-list according to the format specifiers contained in fmt. It
returns the number of characters actually printed. A negative return value indicates that an
error has taken place.

The string pointed to by fmt consists of two types of items. The first type is made up of
characters that will be displayed as-is. The second type contains format specifiers that define
the way the arguments are formatted. The format specifiers are shown in Table 6-2. Notice
that each format specifier begins with a percent sign and is followed by a format code. There
must be exactly the same number of arguments as there are format specifiers, and the format
specifiers and the arguments are matched in order. For example, the following call to printf():

printf ("Hi %c %d %s", 'c', 10, "there!");
displays
Hi ¢ 10 there!

If there are insufficient arguments to match the format specifiers, the output is undefined. If
there are more arguments than format specifiers, the remaining arguments are discarded.
The following sections describe the format specifiers in detail.

420 Herb Schildt's C++ Programming Cookbook

Code Format

%C Character.

%d Signed decimal integers.

%i Signed decimal integers.

%e Scientific notation (lowercase e).

%E Scientific notation (uppercase E).

%f Decimal floating point.

%g Uses %e or %f, whichever is shorter (if %e, uses lowercase e).

%G Uses %E or %f, whichever is shorter (if %E, uses uppercase E).

%0 Unsigned octal.

%S Null-terminated string.

%u Unsigned decimal integers.

%X Unsigned hexadecimal (lowercase letters).

%X Unsigned hexadecimal (uppercase letters).

%p Displays an address.

%n The associated argument shall be a pointer to an integer, into
which is placed the number of characters written so far.

%% Prints a % sign.

TaBLE 6-2 The Format Specifiers Used by the printf() Family of Functions

Format Characters and Strings
To display an individual character, use %c. To print a null-terminated string, use %s. You
cannot use printf() to display a string object.

Format Integers
You can use either %d or %i to format an int value. These format specifiers are equivalent;
both are supported for historical reasons. To output an unsigned int, use %u.

You can display an unsigned int in octal or hexadecimal format using %o and %Xx,
respectively. Since the hexadecimal number system uses the letters A through F to represent
the numbers 10 through 15, you can display these letters in either upper- or lowercase. For
uppercase, use the %X format specifier; for lowercase, use %x.

Format Floating-Point Values

The %f format specifier displays a double argument in floating-point format. The %e and
%E specifiers tell printf() to display a double argument in scientific notation. Numbers
represented in scientific notation take this general form:

x.dddddE+/-yy

Chapter 6: Formatting Data

If you want to display the letter "E" in uppercase, use the %E format; otherwise, use %e.
You can use either %f or %e by using the %g or %G format specifiers. This causes printf()
to select the format specifier that produces the shortest output. Where applicable, use %G if
you want "E" shown in uppercase; otherwise, use %g.

The Type Prefixes
To allow printf() to display short and long integers, you will need to add a prefix to the
type specifier. These prefixes can be applied to the d, i, 0, u, and x type specifiers. The 1
modifier indicates that a long data type follows. For example, %ld means that a long int is
to be formatted. The h modifier indicates a short int. Therefore, %hu indicates that the data
is of type short unsigned int.

An L modifier can prefix the floating-point specifiers e, f, and g, and indicates that
a long double follows.

If you are using a modern compiler that supports the wide-character features, then you can
use the 1 modifier with the ¢ specifier to indicate a wide character of type whcar_t. You can
also use the 1 modifier with the s specifier to indicate a wide-character string.

Display an Address
To display an address, use the %p specifier. The address will be formatted in a way compatible
with the type of addressing used by the execution environment.

The %n Specifier

The %n specifier is unique because it does not actually format data. Instead, it causes the
number of characters that have been written at the time the %n is encountered to be stored
in an integer variable whose pointer is specified in the argument list. For example, this code
fragment displays the number 14 after the line "This is a test™:

int i;

printf ("This is a test%n", &i);
printf ("sd", 1i);

Set the Field Width and Precision

The format specifiers can include modifiers that specify the field width and precision. An
integer placed between the % sign and the format code acts as a minimum field-width specifier.
This pads the output to ensure that it is at least a certain minimum length. If the string or
number is greater than that minimum, it will be printed in full, even if it overruns the
minimum. The default padding is done with spaces. If you want to pad with 0's, place a 0
before the field-width specifier. For example, %05d will pad a number of less than 5 digits
with 0's so that its total length is 5.

The exact meaning of the precision modifier depends on the format specifier being
modified. To add a precision modifier, place a decimal point, followed by the precision,
after the field-width specifier. For e, E, and f formats, the precision modifier determines the
number of decimal places printed. For example, %10.4f will display a number at least ten
characters wide with four decimal places. When the precision modifier is applied to the g or
G format code, it determines the maximum number of significant digits displayed. When
applied to integers, the precision modifier specifies the minimum number of digits that will
be displayed. Leading zeros are added, if necessary.

Y|

422

Herb Schildt's C++ Programming Cookbook

When the precision modifier is applied to strings, the number following the period
specifies the maximum field length. For example, %5.7s will display a string that will be at
least five characters long and will not exceed seven. If the string is longer than the
maximum field width, the characters will be truncated off the end.

The minimum field-width and precision specifiers may be provided by arguments to
printf() instead of by constants. To accomplish this, use * as a placeholder. When the format
string is scanned, printf() will match each * to an argument in the order in which they
occur. For example:

printf (" |%*.*£|", 8, 3, 98.6);
produces the following output:
| 98.600]

In this example, the first * matches 8, the second * matches 3, and the f matches 98.6.

Left-Justify Output

By default, all output is right-justified: If the field width is larger than the data printed, the
data will be placed on the right edge of the field. You can force the information to be left-
justified by placing a minus sign directly after the %. For example, %-10.2f will left-justify
a floating-point number with two decimal places in a ten-character field.

The #, +, and Space Flags
In addition to the left-justification flag just described, printf() supports three others. They
are #, +, and space. Each is described here.

The # has a special meaning when used with some printf() format specifiers. Preceding
ag, G, f, e, or E with a # ensures that the decimal point will be present, even if there are no
decimal digits. If you precede the x or X format with #, the hexadecimal number will be
printed with a 0x prefix. If you precede the o format with #, the octal value will be printed
with a 0 prefix. The # cannot be applied to any other format specifiers.

The + flag indicates that a signed numeric value will always include a sign, as in +10 or -5.

The space flag causes a space to be added to the start of non-negative values.

Example

The following program shows several examples of printf() in action.
// Demonstrate printf ().

#include <cstdio>
#include <cmaths>

using namespace std;
int main()
int x = 10;

double val = 568.345;

// It is not necessary for a call to printf() to include

Chapter 6: Formatting Data

// format specifiers or additional arguments.
printf ("This is output to the console.\n");

// Display numeric values.
printf ("This is x and val: %4 %$f\n\n", x, val);
printf ("This is x in uppercase hex: $%X\n", x);

printf ("Mix data %d into %f the format string.\n\n", 19, 234.3);

// Specify various precisions, widths, and sign flags.

printf ("Here is val in various precisions, widths, and sign flags:

o\

printf (" |%10.2f|%+12.4£|% 12.3f|%f|\n", val, val, val, val);
printf (" |%10.2f|%+12.4f|% 12.3f|%f|\n", -val, -val, -val, -val);
printf ("\n") ;

// Display column of numbers, right-justified.
printf ("Right-justify numbers.\n") ;
for(int 1 = 1; i < 11; ++1i)

printf ("%$2d %8.2f\n", i, sgrt(double(i)));

printf ("\n") ;

// Now, left-justify some strings in a 1lé6-character field.
// Right-justify the quantities.

printf ("%$-16s Quantity: %3d\n", "Hammers", 12);
printf ("%$-16s Quantity: %3d\n", "Pliers", 6);

printf ("%$-16s Quantity: %3d\n", "Screwdrivers", 19);
return 0;

}
The output is shown here:

This is output to the console.
This is x and val: 10 568.345000

This is x in uppercase hex: A
Mix data 19 into 234.300000 the format string.

Here is val in various precisions, widths, and sign flags:
| 568.35| +568.3450| 568.345|568.345000 |
| -568.35| -568.3450| -568.345|-568.345000|

Right-justify numbers.
1 1.00
.41
.73
.00
.24
.45
.65
.83
.00
.16

O W O JO0 Ul b WN
W W NDNDNNDNDDNDRE R

[y

\n") ;

423

424

Herb Schildt's C++ Programming Cookbook

Hammers Quantity: 12
Pliers Quantity: 6
Screwdrivers Quantity: 19

Options and Alternatives

By far, the best way to learn to effectively use printf() is to experiment with it. Although the
terseness of its format syntax makes it easy to create some fairly intimidating format
specifiers, they all follow the rules described in the discussion. Just break each format down
into its parts, and it will become easy to understand what it does.

The printf() function is not used for formatting the time and date. The C function that
does this is strftime(), described by the preceding recipe. The C++ approach is to use the
time_put facet, described by Format Time and Date Using the time_put Facet.

You can construct in advance a string that contains formatted output by calling sprintf().
Part of the printf() family of functions, sprintf() works just like printf(), except that instead
of sending its output to standard out (usually the console), it writes the formatted data to a
string. It is shown here:

int sprintf(char *str, const char *fmt, ...)

The formatted output is put into the array pointed to by str. The result is null-terminated.
Thus, on return, the character array pointed to by str contains a null-terminated string. It
returns the number of characters actually copied into str. (The terminating null is not part of
the count.) A negative return value indicates an error.

You need to be careful when using sprintf() because of the possibility of system crashes
and security risks. It is mentioned here primarily because it is still in widespread use in
legacy C code. For new projects, you should use a string stream, such as ostringstream, to
put formatted data into a string. (See Format Data into a String.) When using sprintf(), you
must ensure that the array pointed to by str is large enough to hold the output that it will
receive, including the null terminator. Failure to follow this rule will result in a buffer
overrun, which could lead to a security breach or a system crash. In no case should you use
sprintf() on unchecked data, such as raw data entered by a user. Also, you should not use
a user-entered format string because of the same potential for trouble.

NOTE sprintf() has the potential to cause a system crash or a security breach. Its use in new code
is not recommended. Many compilers supply nonstandard versions of sprintf(), often called
something like snprintf(), that allow you to specify the maximum number of characters that will
be copied into the string. If you are maintaining legacy C code, then it is recommended that you
use such a function to help avoid problems.

You can send formatted output to a file by using fprintf(). It is shown here:
int fprintf(FILE *fp, const char *fmt, ...)

It works just like printf(), except that the formatted data is written to the file pointed to by
fp. The return value is the number of characters actually output. If an error occurs, a
negative number is returned. Because fprintf() uses the C I/O system, which is based on
file pointers rather than stream objects, you will not normally use it in C++ programs. It is,
of course, widely used in legacy C code.

CHAPTER
Potpourri

ne of the problems with writing a programming cookbook is finding an appropriate

stopping point. There is a nearly unlimited universe of topics from which to choose,

any number of which could merit inclusion. It's difficult to find where to draw the
line. Of course, all books must end. Thus, a stopping point, whether easily found or not, is
always required. This book is no exception.

In this, the final chapter of the book, I have chosen to conclude with an assortment of
recipes that span a variety of topics. These recipes represent techniques that I wanted
covered in the book, but for which a complete chapter was, for one reason or another, not
appropriate. For example, I wanted to show how to overload C++'s special case operators,
such as [], —>, new and delete, and so on. Although several recipes are dedicated to
overloading these operators, there are not enough for a chapter of their own. I also wanted
to include recipes that address some common but isolated "How-To" questions, such as how
to create a copy constructor, implement a conversion function, or use a runtime type ID. All
important topics, but none large enough for its own chapter. Despite the wide-ranging
nature of the recipes in this chapter, all do have two things in common:

1. They answer a frequently asked question.
2. They are applicable to a wide range of programmers.
Furthermore, all describe key concepts that you can easily adapt and enhance.

Here are the recipes contained in this chapter:

® Operator Overloading Basic Techniques

¢ Overload the Function Call Operator ()

¢ Overload the Subscripting Operator []

¢ Opverload the —> Operator

¢ Opverload new and delete

¢ Opverload the Increment and Decrement Operators

¢ Create a Conversion Function

¢ Create a Copy Constructor

¢ Determine an Object's Type at Runtime

425

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

426 Herb Schildt's C++ Programming Cookbook

¢ Use Complex Numbers
¢ Use auto_ptr

¢ Create an Explicit Constructor

”~

Operator Overloading Basic Techniques

I Key Ingredients

Headers Classes Functions

ret-type operator#(param-list)

In C++, operators can be overloaded relative to a class, including classes that you create.
This lets you define what a specific operation, such as + or /, means for an object of the class.
It also lets objects of the class be used in expressions, in just the same way that you use the
built-in types. Recall that when you define a class, you are creating a new data type.
Through operator overloading, you can seamlessly integrate this new data type into your
programming environment. This type extensibility is one of C++'s most important and
powerful features because it lets you expand the C++ type system to fit your needs.
Operator overloading will be familiar territory for most readers because it is a basic C++
skill and most programmers know how to overload the more commonly used operators.
For this reason, the operator overloading recipes in this chapter focus on these specialized
operators: increment and decrement, (), [1, =>, and new and delete. Many programmers
find these operators confusing when it comes to overloading, and they are the source of
many "How-To" questions. However, for completeness, this recipe presents a brief review of
the basic techniques used to overload an operator. This overview is sufficient for the
purposes of this chapter, but it is not a substitute for an in-depth examination of the topic.

NOTE For an in-depth look at operator overloading, I recommend my book C++: The Complete
Reference.

Step-by-Step
To overload an operator as a member function of a class involves these steps:
1. Add an operator function to the class, specifying the operator that you want to
overload.

2. For binary operators, the operator function will have one parameter, which will
receive the right-hand operand. The left-hand operand will be passed via this.

3. For unary operators, the operator function will have no parameters. Its single
operand is passed via this.

Chapter 7: Potpourri

4. In the body of the function, perform the operation.

5. Return the result of the operation.
To overload an operator using a non-member function involves these steps:

1. Create a non-member operator function that specifies the operator that you want
to overload.

2. For binary operators, the operator function will have two parameters. The first
parameter receives the left-hand operand, and the second parameter receives the
right-hand operand. At least one of the operands must be an object of or a reference
to the class being acted upon.

3. For unary operators, the operator function will have one parameter, which must be
an object of or a reference to the class being acted upon. This parameter is the operand.

4. In the body of the function, perform the operation.

5. Return the result of the operation.

Discussion

When you overload an operator, you define the meaning of that operator for a particular
class. For example, a class that defines a linked list might use the + operator to add an object
to the list. A class that implements a stack might use the + to push an object onto the stack.
Another class might use the + operator in an entirely different way. When an operator is
overloaded, none of its original meaning is lost. It is simply that a new operation, relative to
a specific class, is defined. Overloading the + to handle a linked list, for example, does not
cause its meaning relative to integers (i.e., addition) to be changed.

To overload an operator, you must define what the operation means relative to the class
to which it is applied. As a general rule, you can use either member functions or non-member
functions. (The exceptions to this rule are the operator functions for =, (), [1, and —>, which
must be implemented by a non-static member function.) Although similar, there are some
differences between the two approaches.

To create an operator function, use the operator keyword. The general form of an
operator function is:

ret-type classname::operator#(param-list)

{

// operations

}

Here, the operator that you are overloading is substituted for the #, and ret-type is the type of
value returned by the specified operation. Although it can be of any type you choose, the
return value is often of the same type as the class for which the operator is being overloaded.
This correlation facilitates the use of the overloaded operator in compound expressions. The
exceptions are the logical and relational operators, which typically return a bool value.

The precise nature of param-list depends on what type of operator is being overloaded
and whether it is implemented as a member function or a non-member function. For a
member unary operator function, param-list will be empty and the operand is passed through

21

428

Herb Schildt's C++ Programming Cookbook

the this pointer. For a member binary operator function, param-list will have one parameter,
which receives the right-hand operand. The left-hand operand is passed via this. In either
case, the object that invokes the operator function is the one passed via the this pointer.

For non-member operator functions, all arguments are passed explicitly. Therefore, a
non-member unary operator function will have one parameter, whose type must be a class,
class reference, an enumeration, or an enumeration reference. This parameter receives the
operand. A non-member binary operator function will have two parameters, of which the
type of at least one must be a class, class reference, an enumeration, or an enumeration
reference. The first parameter receives the left-hand operand, and the second parameter
receives the right-hand operand. Notice that a non-member operator function can be
overloaded relative to an enumeration type, but this is not common. Typically, operators are
overloaded relative to a class type, and that is the focus of this recipe.

Because of the differences between member and non-member operator functions, each
is described separately.

Member Operator Functions
When defining an operator function that acts on objects of a class that you have created, you
will usually use a member function. The reason is simple: Being a member of the class, the
function has direct access to all of the class' members. It also has a this pointer. This makes it
easy for the operator to act on, and possibly alter, an operand.

The best way to understand how to use a member function to overload an operator is to
work through some examples. Assume a class called three_d that encapsulates three-
dimensional coordinates, as shown here:

class three d {
int x, vy, z; // 3-D coordinates
public:
three d() { x =y =2z = 0; }
three d(int i, int j, int k) {x = i; v = §; z = k; }

//
Vi

You can define the + operation for three_d objects by adding an operator+() function to the
class. To do so, first add its prototype to the three_d class:

three_d operator+(three d rh op);
Next, implement the function. Here is one way:

// Overload + for objects of type three d.
three_d three_d::operator+(three_d rh op)

{

three d temp;

temp.x = X + rh_op.x;

temp.y y + rh op.y;
temp.z = 2z + rh op.z;

return temp;

Chapter 7: Potpourri 429

This function adds the coordinates of two three_d operands together and returns an object
that contains the result. Recall that in a member operator function, the left-hand operand
invokes the operator function and is passed implicitly via this. The right-hand operand is
passed explicitly as an argument to the function. Therefore, assuming that objA and objB
are both three_d objects, in the following expression

objA + objB

objA is passed through this and objB is passed in rh_op.

In the implementation of operator+() just shown, notice that neither operand is modified.
This is in keeping with the normal semantics of the + operator. For example, in the expression
10 + 12, neither the 10 nor 12 is modified. Although there is no rule that enforces it, in general,
it is best to have your overloaded operator work in the expected way.

Of course, there are some operators, such as assignment or increment, in which an
operand is modified by the operation. In this case, you will need to modify an operand in
order for your operator function to reflect the normal meaning of the operator. For example,
again assuming the three_d class, here is one way to implement assignment:

// Overload assignment for three d.
three d three_ d::operator=(three_d rh op)

{

x = rh _op.x;
y = rh op.y;
z = rh op.z;

return *this;

}

Here, the coordinate values of the right-hand operand (passed in rh_op) are assigned to the
left-hand operand (passed via this). Thus, the invoking object is changed to reflect the value
it is being assigned. Again, this is in line with the expected meaning of =.

Given the two operator functions just described and assuming three_d objects called
objA, objB, and objC, the following statement is valid:

objC = objA + objB;

First, the addition is performed by operator+(), with objA passed through this and objB
passed to rh_op. The result becomes the right-hand operand passed to operator=(), with
objC being passed through this. On completion, objC will contain the sum of objA and
objB, and objA and objB will be unchanged.

The preceding version of operator+() added one three_d object to another, but you can
overload operator+() so that it adds some other type of value. For example, this version of
operator+() adds an integer to each coordinate:

// Overload + to add an integer to a three d object.
three d three d::operator+(int rh op)

{

three d temp;

temp.x = x + rh op;

430

Herb Schildt's C++ Programming Cookbook

temp.y
temp.z

y + rh op;
Z + rh op;

return temp;

}
Once this version of operator+() has been defined, you can use an expression like:

objA + 10

This causes 10 to be added to each coordinate. Understand that the previous version of
operator+(), which adds two three_d objects, is still available. It's just that the definition
of + relative to three_d has been expanded to handle integer addition.

For a unary member operator function, the sole operand is passed through this. For
example, here is the unary version of operator—(), which negates the coordinate and returns
the result:

// Overload - for three d.
three d three d::operator- ()

{

three d temp;

temp.x = -X;
temp.y = -vyi
temp.z = -z;

return temp;

}

It is possible to create both a binary and a unary form of some operators, such as + and —.
Simply overload the operator function as needed. For member functions, the binary form
will have one parameter; the unary form will have none.

The preceding operator functions all return an object of type three_d, which is the class
for which they are defined. This is usually the case, except when overloading the logical or
relational operators. Those operator functions will usually return a bool result, which
indicates the success or failure of the operation. For example, here is one way to implement
the = = operator for three_d:

// Overload == for a three d object.
bool three d::operator==(three d rh op)

{
if((x == rh op.x) && (y == rh op.y) && (z == rh op.z))
return true;

return false;

}

It compares two three_d objects for equality by comparing each pair of values. All of the
invoking object's values must be equal to those for the operand on the right for this function
to return true.

Chapter 7: Potpourri 431

Non-Member Operator Functions

As mentioned at the start of this discussion, a non-member binary operator function is passed
its operands explicitly, through its parameters. (Recall that non-member functions do not have
this pointers because they are not invoked on an object.) A binary non-member operator
function has two parameters, with the left-hand operand being passed to the first parameter
and the right-hand operand passed to the second parameter. A unary non-member operator
function is passed its operand through its one parameter. Otherwise, non-member operator
functions work much like member operator functions.

Although you will often use member functions when overloading operators, there are
times when you will need to use non-member operator functions. One case is when you
want to be able to use a built-in type (such as int or char *) on the left side of a binary
operator. To understand why, recall that the object that invokes a member operator function
is passed in this. In the case of a binary operator, it is always the object on the left that
invokes the function. This is fine, provided that the object on the left defines the specified
operation. For example, assuming a three_d object called objA and the member function
operator+() shown earlier, the following is a perfectly valid expression:

objA + 10; // will work

Because objA is on the left side of the + operator, it invokes the overloaded member
function operator+(int) function, which adds 10 to objA. However, this statement won't
work:

10 + Ob; // won't work

The problem is that the object on the left of the + operator is an integer, a built-in type for
which no operation involving an integer and an object of type three_d is defined.

The solution to this problem is to overload the + a second time, using a non-member
operator function to handle the case in which the integer is on the left. Therefore, the
member operator function handles object + integer, and the non-member operator function
handles integer + object. To give the non-member operator function access to the members of
the class, declare it as a friend. Here is how a non-member version of operator+() can be
implemented to handle integer + object for the three_d class:

// Overload operator+ () for int + obj. This is a non-member function.
three d operator+(int lh op, three d rh op) ({
three d temp;

temp.x = lh op + rh op.x;
temp.y = lh op + rh op.y;
temp.z = 1h op + rh op.z;

return temp;

}

Now, the statement

10 + Ob; // now OK

is legal.

432 Herb Schildt's C++ Programming Cookbook

Another time when a non-member operator function is useful is when creating a custom
inserter or extractor. As explained in Chapter 5, the << is overloaded so that it outputs
(inserts) data into a stream, and the >> is overloaded so that it inputs (extracts) data from a
stream. These functions must be non-members because they each take a stream object as the
left-hand operand. The right-hand operand is either an object to be output or an object that
will receive input. See Create Custom Inserters and Extractors in Chapter 5 for details.

One last point: Not all operators can be implemented by non-member functions. For
example, the assignment operator must be a member of its class. So must the (), [], and —>
operators.

Example

The following example puts into action the preceding discussion, filling in all of the pieces
and demonstrating the operators.

// Demonstrate operator overloading basics using the three d class.

!/

// This example uses member functions to overload the binary =+,
// -, =, and == operators. It also uses a member function to
// overload the unary -. Notice that the + is overloaded for
// three d + three d and for three d + int.

!/

// Non-member functions are used to create custom inserters for
// three_d objects and to overload + for int + three d.

#include <iostream>
using namespace std;

// A class that encapsulates 3-dimensional coordinates.
class three d {

int x, y, z; // 3-D coordinates
public:

three d() { x =y =2z = 0; }

three d(int i, int j, int k) { x = i; vy

1]
(-
N
1]
~
—

// Add two three d objects together.
three d operator+(three_d rh op);

// Add an integer to a three d object.
three d operator+(int rh op);

// Subtract two three d objects.
three_d operator-(three_d rh _op);

// Overload assignment.
three d operator=(three d rh op);

// Overload ==.
bool operator==(three_d rh op);

// Overload - for unary operation.
three d operator- () ;

Chapter 7: Potpourri 433

// Let the overloaded inserter be a friend.
friend ostream &operator<< (ostream &strm, three d op);

// Let the overloaded + be a friend.
friend three d operator+(int 1lh op, three d rh op);

Vi

// Overload binary + so that corresponding coordinates are added.
three d three d::operator+(three d rh op)

{

three d temp;

temp.x X + rh op.x;
temp.y = y + rh op.y;
temp.z = z + rh _op.z;

return temp;

}

// Overload binary + so that an integer can be added to
// a three d object.
three_d three_d::operator+ (int rh_op)

{

three d temp;

temp.x = x + rh _op;
temp.y y + rh op;
temp.z Z + rh op;

return temp;

}

// Overload binary - so that corresponding coordinates are subtracted.
three d three d::operator- (three d rh op)

{

three d temp;

temp.x = X - rh _op.x;
temp.y = y - rh op.y;
temp.z = z - rh op.z;

return temp;

}

// Overload unary - so that it negates the coordinates.
three d three d::operator- ()

{

three_d temp;

temp.x -X;

temp.y -Yi
temp.z = -z;

434

Herb Schildt's C++ Programming Cookbook

return temp;

}

// Overload assignment for three d.
three_d three_d::operator=(three_d rh op)

{

X = rh op.x;
y = rh op.y;
z = rh _op.z;

return *this;

}

// Overload == for a three d object. It compares each
// coordinate. All of the invoking object's values
// must be equal to those for the operand on the right
// for this function to return true.
bool three d::operator==(three d rh op)
{

if((x == rh op.x) && (y == rh op.y) && (z == rh op.z)

return true;

return false;

}

// These are non-member operator functions.

//

// Overload << as a custom inserter for three d objects.

ostream &operator<< (ostream &strm, three d op) ({
strm << op.x << ", " << Op.y << ", " << op.z << endl;

return strm;

}

// Overload + for int + obj.
three d operator+(int lh op, three d rh op) ({
three d temp;

temp.x = 1h op + rh_op.x;
temp.y = 1lh op + rh op.y;
temp.z = 1h op + rh op.z;

return temp;

}

int main ()

{

three d objA(1, 2, 3), objB(10, 10, 10), objC;

cout << "This is objA: " << obja;
cout << "This is objB: " << objB;

)

// Obtain the negation of objA.
objC = -objA;

cout << "This is -objA: " << objC;
// Add objA and objB together.
objC = objA + o0bjB;
cout << "objA + objB: " << 0bjC;
// Subtract objB from
objC = objA - objB;
cout << "objA - objB:

ObjA.
" << objC;

// Add obj + int.
objC = objA + 10;
cout << "objA + 10: " << objC;
// Add int + obj.
objC = 100 + objA;
cout << "100 + objA: " << objC;
// Compare two objects.
if (obja objB) cout <<
else cout << "objA is not equal to objB.\n";

return 0;

}

The output is shown here:

This is objaA: 1, 2, 3
This is objB: 10, 10, 10
This is -obja: -1, -2, -3
objA + objB: 11, 12, 13
objA - objB: -9, -8, -7
objA + 10: 11, 12, 13
100 + objA: 101, 102, 103

objA is not equal to objB.

Options and Alternatives

"objA is equal to objB

Chapter 7: 435

Potpourri

An";

Although the preceding examples have passed three_d operands by value, in many cases,
you can also pass an operand by reference. For example, here is operator==() changed so

that the right-hand operand is passed by reference:

bool three d::operator==(three_d &rh op)

{
if((x == rh op.x)
return true;

&& (y == rh op.y) &&

return false;

}

rh op.z))

436

Herb Schildt's C++ Programming Cookbook

Often, using a reference can increase the performance of your program, because it is usually
faster to pass a reference rather than an entire object. Be careful, though. In the case of very
small objects, passing by value can be faster.

One place where a reference parameter is valuable is when an operand must be
modified by the operator. One such case occurs when a non-member operator function is
used to implement an increment or decrement operation. See Overload the Increment and
Decrement Operators for information.

C++ has several special case operators, such as the function call operator () or the
subscripting operator [1. These operators can also be overloaded, but the techniques to do
so are individualized for each operator. These special case operators are the subject of the
next several recipes.

There are some restrictions that apply to operator overloading:

1. You cannot alter the precedence of any operator.

2. You cannot alter the number of operands required by an operator, although you can
choose to ignore an operand.

3. Except for the function call operator (), operator functions cannot have default
arguments.

4. The following operators cannot be overloaded:
. .* ?

Technically, you are free to perform any activity inside an operator function and it need
not bear any relationship to that operator's normal meaning. However, when you stray
significantly from the normal meaning of an operator, you run the risk of dangerously
destructuring your program. For example, when someone reading your program sees a
statement like Ob1+Ob2, he or she expects something resembling, or at least related to,
addition. Implementing the + so that it acts more like the | | operator, for example, is
inherently confusing. Therefore, before decoupling an overloaded operator from its normal
meaning, be sure that you have sufficient reason to do so.

One good example where decoupling is successful is found in the way C++ overloads
the << and >> operators for I/O. Although the I/O operations have no relationship to bit-
shifting, these operators provide a visual "clue" as to their meaning, and this decoupling
works. Here is another good example of decoupling: A stack class might overload the + to
push an object onto a stack. Although this use differs from addition, it is still intuitively
compatible with addition because it "adds" an object to the stack.

Except for the = operator, operator functions are inherited by derived classes. However,
a derived class is free to overload any operator it chooses (including those overloaded by
a base class).

Chapter 7: Potpourri 437

”~

Overload the Function Call Operator ()

I Key Ingredients

Headers Classes Functions

ret-type operator()(param-list)

One of the more powerful operators that you can overload is (), the function call operator. It
can also be one of the more confusing, especially to newcomers. The function call operator
lets you define an operation on an object that cannot be performed by overloading any
other operator. For example, you might want to define an operation that takes more than
two operands. Or, you might want to define an operation that has no obvious analog with
any of the normal operators. In these cases, the function call operator offers an elegant
solution. This recipe shows the process.

Step-by-Step

To overload the () function call operator involves these steps:

1. The function call operator must be a non-static member of the class for which it is
defined. It cannot be a non-member function. Therefore, add operator() as a member
to the class on which it will be operating.

2. Inside operator(), perform the desired actions.

3. On completion, have operator() return the result.

Discussion

When you overload the () function call operator, you are not, per se, creating a new way to
call a function. Rather, you are creating an operator function that can be passed an arbitrary
number of operands by use of the function call syntax. The function call operator must be
implemented as a non-static member function of a class. The general form of the function
call operator is shown here:

ret-type operator()(param-list) {
// Perform the desired operation based on the arguments
// and return the result.

}

The function call operator is invoked on an object of its class. The invoking object is passed
via this, and the arguments are passed to its parameters. If no arguments are needed, then
no parameters need be specified. The function returns the result of the operation.

Let's work through an example. Assuming the three_d class from the previous recipe,
the following function call operator returns a three_d object that represents a point whose
coordinates are midpoints between the invoking object and its three_d argument.

438

Herb Schildt's C++ Programming Cookbook

// Overload function call. Take a three d object as a parameter.
// This function returns a three d object whose coordinates are
// the midpoints between the invoking object and obj.

three d three d::operator() (three d obj)

{

three d temp;

temp.x = (x + obj.x) / 2;
temp.y = (y + obj.y) / 2;
temp.z = (z + obj.z) / 2;

return temp;

}

Given three three_d objects called objA, objB, and objC, the following calls operator() on
objA, passing in objB:

objC = objA(obiB) ;
Here, objA(objB) translates into this call to the operator() function:
objA.operator () (objB)

The result is returned and stored in objC.

Before moving on, let's review the key points. First, when you overload the () operator,
you define the parameters that you want to pass to that function. When you use the () operator
in your program, the arguments you specify are copied to those parameters. The object that
generates the call (objA in the foregoing example) is pointed to by the this pointer.

You can overload operator() to allow different types and/or numbers of arguments. For
example, here is a version of operator() for three_d that takes three int arguments. It adds
the values of those arguments to the coordinates of the invoking object and returns the result.

// Overload function call. Take three ints as parameters.
three d three d::operator() (int a, int b, int c)

{

three d temp;

temp.x = X + a;
temp.y = y + b;
temp.z = z + C;

return temp;

}
This function allows the following type of statement:
objC = objA(l, 2, 3);

Here, the values 1, 2, and 3 are added to objA's x, y, and z fields, and the result is returned
and stored in objC.

One other point: You can also overload operator() so that its parameter list is empty. In
this case, no arguments are passed to the function when it is called.

Chapter 7:

Example

The following example puts together the pieces described in the discussion.
// Demonstrate the function call operator.

#include <iostream>

using namespace std;

// A class that encapsulates 3-dimensional coordinates.
class three 4 {

int x, y, z; // 3-D coordinates
public:

three d() { x =y =2 = 0; }

three d(int i, int j, int k) { x = i; vy = j; z = k; }

// Create two function call operator functions.
three d operator () (three d obj) ;
three d operator() (int a, int b, int c¢);

// Let the overloaded inserter be a friend.
friend ostream &operator<< (ostream &strm, three d op);

}i

// Overload function call. Take a three d object as a parameter.

// This function returns a three d object whose coordinates are
// the midpoints between the invoking object and obj.
three d three d::operator() (three d obj)

{

three d temp;

temp.x = (x + obj.x) / 2;
temp.y = (y + obj.y) / 2;
temp.z = (z + obj.z) / 2;

return temp;

}

// Overload function call. Take three ints as parameters.
// This version adds the arguments to the coordinates.
three d three d::operator() (int a, int b, int c)

{

three d temp;

temp.x = X + a;
temp.y =y + b;
temp.z = z + C;

return temp;

}

// The three_d inserter is a non-member operator function.
ostream &operator<< (ostream &strm, three d op) ({
strm << op.x << ", " << Op.y << ", " << op.z << endl;

Potpourri

439

440

Herb Schildt's C++ Programming Cookbook

return strm;

}

int main ()

{

three d objA(1, 2, 3), objB(10, 10, 10), objC;

cout << "This is objA: " << objA;
cout << "This is objB: " << objB;

objC = objA(objB) ;
cout << "objA(objB): " << objC;

objC = objA (10, 20, 30);
cout << "objA (10, 20, 30): " << objC;

// Can use the result of one as an argument to another.
objC = objA(objB (100, 200, 300));
cout << "objA(ocbjiB(100, 200, 300)): " << obiC;

return O;

}

The output is shown here:

This is obja: 1, 2, 3

This is objB: 10, 10, 10

objA(objB): 5, 6, 6

objA (10, 20, 30): 11, 22, 33

objA (objB (100, 200, 300)): 55, 106, 156

Options and Alternatives

When the function call operator is implemented for a class, an instance of its class can be
used as a function object. Function objects are used extensively by the STL. Chapter 4 shows
several examples.

The two versions of operator() in the preceding example do not modify the invoking
object. Instead, they return the result. Although there is no rule that enforces it, I prefer this
approach in most cases. In general, if an object is going to be modified, I prefer it to occur
through an overloaded assignment operator, not the function call operator. In other words,

objA (objB) ;
should not normally be used as a substitute for
objA = objB;

In general, operator() should be reserved for operations that do not relate to any of the
other operators. I don't like using operator() as a "catch-all" operator that substitutes for an
overload of the proper operator. Properly used, operator() is a powerful feature. Poorly
used, it can confuse your code.

Chapter 7: Potpourri 441

~ Overload the Subscripting Operator [|

I Key Ingredients

Headers Classes Functions

ret-type operator|](indx-type idx)

If T had a favorite operator to overload, it would probably be [], the subscripting operator.
Why? Because it enables the creation of "safe" arrays, which are arrays in which boundary
overruns are prevented. As you know, C++ performs no bounds-checking on normal arrays.
However, by wrapping an array inside a class and then allowing access to that array only
through the subscripting operator, you can prevent accesses that are outside the array. You
can also ensure that only valid values are assigned to the array. This mechanism is employed
with great success by the STL, such as in the vector and deque classes.

The []is, of course, useful in other contexts. For example, a class that encapsulates an IP
request might allow access to properties by indexing the object. Basically, any time you have
a class that has elements for which indexing makes sense, the subscripting operator offers
an elegant approach. This recipe shows the basic techniques needed to implement it.

Step-by-Step

To overload the [] subscripting operator involves these steps:

1. The subscripting operator must be a non-static member of the class for which it is
defined. It cannot be a non-member function. Therefore, add operator[1() as a
member to the class on which it will be operating.

2. Inside operator| 1(), perform the desired action, which usually involves accessing
some object through an index.

3. On completion, have operator|]() return the object (or a reference to the object)
based on the index.

Discussion

The []is a binary operator for the purposes of overloading, and it must be overloaded by
a non-static member function. It has this general form:

ret-type operator[](indx-type idx)
{

// Access the item specified by idx.
)

The subscript is passed in idx, which is often an int, but can be any type. For example, in an
associative container, idx could be a key. The function can return any type, but it will usually
be the type of element being obtained.

442

Herb Schildt's C++ Programming Cookbook

When the [] is evaluated, the object being subscripted must be an instance of the class
for which the subscripting operator is defined. This instance is passed via this. The object
within the []is passed in idx. For example, given an object called obj, the expression

obj [5]
translates into this call to the operator[1() function:
obj.operator[] (5)

In this case, 5 is passed to the idx parameter. A pointer to obj, the object that generated the
call, is passed via this.

You can design the operator| 1() function in such a way that the [] can be used on both
the left and right sides of an assignment statement. To do this, simply specify the return
value of operator| () as a reference. After doing this, the following expressions are valid:

x = obj[4];
obj[5] = 9;

Overloading the [] operator provides a means of implementing safe array indexing in
C++. This is one of its main uses and one of its principal advantages. As you know, in C++,
it is possible to overrun (or underrun) an array boundary at runtime. However, if you create
a class that contains the array and allow access to that array only through the overloaded []
subscripting operator, then you can intercept an out-of-range index. The following example
illustrates this.

Example

The following program shows how to overload the subscripting operator by using it to create
a "safe array" that prevents boundary errors. It defines a generic class called safe_array,
which encapsulates an array. The type of the array is specified by a template type parameter
called T. The length of the array is specified by a non-type template parameter called len.
The array encapsulated by safe_array is called ar. The length of the array is stored in a
variable called length. Both are private members of safe_array. The array elements are
accessed only through the overloaded operator[(). It first confirms that an array access is
within bounds. If it is, operator[]() then returns a reference to the element. The length of the
array can be obtained by calling the method getlen().

// Overload [] to create a generic safe array type.

!/

// The operator[] () function checks for array boundary errors
// so that an overrun or underrun is prevented.

!/

// Notice that this example uses a non-type template parameter
// to specify the size of the array.

#include <iostream>
#include <cstdlib>

using namespace std;

Chapter 7: Potpourri 443

// Here, T specifies the type of the array and the non-type
// parameter len specifies the length of the array.
template <class T, int len> class safe array ({

// The array ar is declared to be of type T and of length len.

// The array is private. Access is allowed only through operator[] ().
// In this way, boundary errors can be prevented.

T ar[len];

int length;

public:
// Create a safe array of type T with a length of len.
safe_array();

// Overload the subscripting operator so that it accesses
// the elements in ar.
T &operator[] (int i) ;

// Return the length of the array.
int getlen() { return length; }

Vi

// Create a safe array of type T with a length of len.
// The len variable is a non-type template parameter.

template <class T, int len> safe array<T, lens>::safe array()
// Initialize the array elements to their default value.
for(int i=0; i < len; ++i) ar[i] = T();

length = len;

}

// Return a reference to the element at the specified index.
// Provide range checking to prevent boundary errors.
template <class T, int len> T &safe array<T, len>::operator[] (int i)
{
if(i < 0 || i > len-1) {
// Take appropriate action here. This is just
// a placeholder response.
cout << "\nIndex value of " << i << " is out-of-bounds.\n";
exit (1) ;
}

return ar[i];

}

// This is a simple class used to demonstrate an array of objects.
// Notice that the default constructor gives x the value -1.
class myclass {

public:
int x;
myclass(int i) { x = 1i; };
myclass() { x = -1; }

i

int main()

{

444 Herb Schildt's C++ Programming Cookbook

safe array<int, 10> i _ar; // integer array of size 10
safe array<double, 5> d _ar; // double array of size 5
int i;

cout << "Initial values for i ar: ";
for(i=0; i < i_ar.getlen(); ++i) cout << i _ar[i] << " L)
cout << endl;

// Change the values in i_ar.
for(i=0; i < i ar.getlen(); ++i) i ar[i] = i;

cout << "New values for i_ar: ";
for(i=0; i < i_ar.getlen(); ++1i) cout << i_ar[i] << " ";
cout << "\n\n";

cout << "Initial values for d ar: ";
for(i=0; i1 < d_ar.getlen(); ++i) cout << d_ar[i] << " ";
cout << endl;

// Change the values in d_ar.
for(i=0; i < d ar.getlen(); ++i) d ar[i] = (double) i/3;

cout << "New values for d_ar: ";
for(i=0; i < d_ar.getlen(); ++1i) cout << d_ar[i] << " ";
cout << "\n\n";;

// safe array works with objects, too.
safe array<myclass, 3> mc_ar; // myclass array of size 3

cout << "Initial values in mc_ar: ";
for(i = 0; 1 < mc_ar.getlen(); ++i) cout << mc_ar[i] .x << " ";
cout << endl;

// Give mc_ar some new values.
mc_ar[0].x = 19;
mc_ar[l].x = 99;
mc_ar [2] .x -97;

cout << "New values for mc_ar: ";
for(i = 0; 1 < mc_ar.getlen(); ++i) cout << mc_ar([i] .x << " ";
cout << endl;

// This creates a boundary overrun.
i_arf[12] = 100;

// Comment-out the preceding line and then Uncomment the following
// line to generate a boundary underrun.
// i_ar[-2] = 100;

return O;

}

Chapter 7: Potpourri 445

The output is shown here:

Initial values for i ar: 0 0 0 0 0 0 0 O O O
New values for i ar: 0 1 2 3 4 5 6 7 8 9

Initial values for d ar: 0 0 0 0 O
New values for d _ar: 0 0.333333 0.666667 1 1.33333

Initial values in mc_ar: -1 -1 -1
New values for mc_ar: 19 99 -97

Index value of 12 is out-of-bounds.

In the program, pay special attention to this statement:
i ar[12] = 100;

It attempts to assign 100 to location 12 within i_ar. But i_ar is only 10 elements long! If this
were a normal array, then a boundary overrun would occur. Fortunately, in this case, the
attempt is intercepted by operator[l() and the program is terminated before any damage
can be done. (In actual practice, some sort of error-handling would be supplied to deal with
the out-of-range condition; the program would not have to terminate.)

Options and Alternatives

Although overloading the subscripting operator is usually the best approach in cases in
which the concept of a "subscript" applies, you will sometimes see "get" and "put" functions
used instead. In this case, the index of the desired item is passed to the "get" or "put" function
explicitly as an argument. For example, the following sequence might be used to obtain the
third string or to set the fourth string for some set of string values:

str = get(3);
put (4, "testing");

Of course, subscripting offers a cleaner approach, but the "get" and "put" approach is
common in legacy C code. If you find such code, you might want to upgrade it to C++ by
overloading [1.

'

Overload the -> Operator

I Key Ingredients

Headers Classes Functions

type *operator—>()

446

Herb Schildt's C++ Programming Cookbook

One of the more interesting operators is —>. It is called the class member access operator. It is a
unary operator that returns a pointer. This pointer is related in some way or another to the
object on which —> is invoked. The precise nature of the relationship is defined by the class
for which the —> is defined. As it relates to overloading, the —> is the source of many
questions—and sometimes confusion. This recipe demonstrates how to overload it. A bonus
example is included that shows how an overloaded —> can be used to create a "safe pointer."

Step-by-Step

Overloading the —> operator involves the following steps:

1. The member access operator must be a non-static member of the class for which it is
defined. It cannot be a non-member function. Therefore, add operator->() as a
member to the class on which it will be operating.

2. Inside the function, obtain a pointer to, or in some way associated with, the
invoking object.

3. Return the pointer.

Discussion
The —> operator is overloaded as a unary operator. Its general usage is shown here:

object—>element

Here, object is the object that activates the call. This must be an instance of the class for
which the member access operator is defined, and it is passed to operator—>() through this.
The element must be some member accessible within the object. The function must return a
pointer to object or a pointer to an object managed by object. The principal use of the member
access operator is to support what are referred to as "safe pointers” or "smart pointers."
These are pointers that verify the integrity of a pointer before performing an action through
it. Other uses include the creation of pointers that automatically manage memory or that
support garbage collection.

The general form of an operator->() is shown here:

type *operator—>() {
// Return a pointer to the invoking object.

}

Here, type must be the same as the class for which the operator—>() is defined. An operator—>()
function must be a non-static member of its class.

Example

The following example demonstrates how to overload —>. It simply returns a pointer to the
invoking object. This makes it possible to use —> to access a member of myclass through an
object, rather than a pointer to an object. Thus, the overload of operator—>() makes the —>
and the . operators equivalent. Although this example is useful for illustrating the effect of
overloading —> because it is quite short, it does not represent a good use (or recommended

Chapter 7: Potpourri 447

practice). To see how an overloaded —> would normally be employed, refer to the Bonus
Example.

// Demonstrate operator->().
#include <iostream>
using namespace std;

class myclass {
public:
int 1i;

// Overload -> to return a pointer to the invoking object.
myclass *operator->() { return this; }

Vi

int main()

{

myclass ob;
ob->i = 10; // same as ob.i
cout << ob.1 << " " << ob->i;

return 0;

}

The output is shown here:

10 10

Bonus Example: A Simple Safe Pointer Class

Although the preceding example shows the mechanics of overloading —>, it does not show
its power. Normally, the —> is overloaded to implement a custom pointer type that in one
way or another constrains or monitors actions on the pointer. For example, you might create
a pointer type that provides automatic garbage collection. Perhaps the most common use,
however, is to create a "safe pointer” that prevents invalid actions through the pointer, such
as dereferencing or accessing a member through a null pointer. Such a pointer can be
implemented by overloading the * and —> operators so that they confirm that the pointer is
not null before proceeding with the operation. A simple implementation of this concept is
developed by this example.

The following program creates a simple safe pointer class called safe_ptr that prevents
operations on a pointer that is null. It does this by overloading the —> and *. (When used as
the dereferencing operator, the * is overloaded as a unary operator.) These operators are
overloaded to prevent a null pointer from being dereferenced or used to access a member.

The safe_ptr class is implemented as a template class in which the type parameter
specifies the base type of the pointer. For example, to create a safe pointer to an int, use this
declaration:

safe ptr<int> intptr;

448

Herb Schildt's C++ Programming Cookbook

Once you have created the safe pointer, you can use it like a normal pointer. For example,
you can assign to it the address of an object in memory with the following statement:

intptr = new int;

You can set or obtain the value of the object through the pointer by using the * operator.
For example:

*intptr = 23;

In the case of pointers to class objects, you can use —> to access a member. For both operators,
safe_ptr confirms that the pointer is not null before applying the * or —.

The safe_ptr class works by encapsulating a pointer in a field called ptr. This is a private
member, and access to it is allowed only through overloaded operators, including the
overloaded assignment operator. A conversion function is also provided, which provides a
conversion from safe_ptr to T *. This allows a safe_ptr to be used as an operand for the
delete operator, for example.

If an attempt is made to use a null pointer, the overloaded * and —> operators will throw
an object of type bad_ptr, which is a custom exception class. Code that uses safe_ptr will
need to watch for that exception.

The following program includes the safe_ptr and the bad_ptr classes. It also defines
a class called myclass, which is used to demonstrate —> with a safe_ptr. Although quite
simple, safe_ptr gives you an idea of the power of overloading the —> operator and the
power of creating your own pointer types. Custom pointer types can be very useful for
preventing errors or for implementing custom memory management schemes. Be aware, of
course, that a custom pointer type will always be slower than a raw pointer because of the
overhead that your code introduces.

// Demonstrate a very simple safe pointer class.

#include <iostream>
#include <string>

using namespace std;

// The exception type thrown by the safe pointer.
class bad ptr {
public:

string msg;

bad_ptr(string str) { msg = str; }

}i

// A class used to demonstrate the safe pointer.
class myclass {
public:

int alpha;

int beta;

myclass (int p, int gq) { alpha = p; beta = g; }

Vi

// A very simple "safe pointer" class that confirms

Chapter 7: Potpourri 449

// that a pointer points somewhere before it is used.
//
// The template parameter T specifies the base type of the pointer.
//
// Note: This class is for demonstration purposes only.
// It is intended only to illustrate the overloaded -> operator.
// A safe pointer class suitable for real-world use needs to be
// more sophisticated and more resilient.
//
template <class T> class safe ptr {
T *ptr;
public:

Vi

safe ptr() { ptr = 0; }

// Overload -> so that it prevents an attempt to use a null pointer
// to access a member.
T *operator->() {
if (lptr != 0) throw bad ptr("Attempt to use -> on null pointer.");
else return ptr;

}

// Overload the unary pointer operator *. This operator prevents
// a null pointer from being dereferenced.
T &operator* () {
if (!ptr) throw bad ptr("Attempt to dereference null pointer.");
else return *ptr;

}

// Conversion from safe_ptr to T *.
operator T *() { return ptr; }

T *operator=(T *val) { ptr = val; return ptr; }

int main ()

{

// First, use safe ptr on an integer.
safe ptr<ints> intptr;

// Generate an exception by trying to use a pointer
// before it points to some object.

try {
*intptr = 23;
cout << "The value pointed to by intptr is: " << *intptr << endl;

} catch(bad _ptr bp) {
cout << bp.msg << endl;
}

// Point intptr to an object.
intptr = new int;

// Now the following sequence will work.
try {

450 Herb Schildt's C++ Programming Cookbook

*intptr = 23;

cout << "The value pointed to by intpr is: " << *intptr << "\n\n";
} catch(bad _ptr bp) {

cout << bp.msg << endl;
}

// Now, use safe ptr on a class.
safe ptr<myclass> mcptr;

// This sequence will succeed.

try {
mcptr = new myclass (100, 200);
cout << "The values of alpha and beta for mcptr are: "
<< mcptr->alpha << " and " << mcptr-s>beta << endl;

mcptr->alpha = 27;
cout << "New value for mcptr->alpha: " << mcptr-s>alpha << endl;
cout << "Same as (*mcptr).alpha: " << (*mcptr).alpha << endl;

mcptr->beta = 99;

cout << "New value for mcptr-sbeta: " << mcptr-sbeta << "\n\n";
} catch(bad _ptr bp) {

cout << bp.msg << endl;
}

// Create another myclass pointer, but don't initialize it.
safe ptr<myclass> mcptr2;

// The following assignment will throw an exception because
// mcptr2 points nowhere.

try {
mcptr2->alpha = 88;
} catch(bad ptr bp)
cout << bp.msg << endl;
}

delete intptr;
delete mcptr;

return O;

}
The output is shown here:

Attempt to dereference null pointer.
The value pointed to by intpr is: 23

The values of alpha and beta for mcptr are: 100 and 200
New value for mcptr-s>alpha: 27

Same as (*mcptr) .alpha: 27

New value for mcptr-s>beta: 99

Attempt to use -> on null pointer.

Chapter 7: Potpourri 451

Options and Alternatives

Be careful when overloading —>. Pointers are already a troublesome feature for some
programmers. If you overload —> in a confusing, counterintuitive manner, you will simply
destructure your code and make it difficult to maintain. In general, you should overload —>
only when creating a custom pointer type. Furthermore, your custom type should look, act,
and feel like a normal pointer. In other words, its operation should be transparent and its
use consistent with a built-in pointer. Of course, your pointer type may perform additional
checks or implement a custom memory management scheme, but it should work like a
normal pointer when used in a program.

In some cases, you may find that C++ already provides the pointer type that you want.
For example, an often-overlooked class provided by the standard C++ library is auto_ptr.
An auto_ptr automatically frees the memory it points to when the pointer goes out of scope.
See Use auto_ptr for details.

'

Overload new and delete

I Key Ingredients

Headers Classes Functions

void operator delete(void *ptr)
void operator delete[](void *ptr)
void *operator new(size_t size)
void *operator new|](size_t size)

Newcomers to C++ are sometimes surprised to learn that new and delete are considered
operators. As such, it is possible to overload them. You might choose to do this if you want
to use some special allocation method. For example, you may want allocation routines that
automatically begin using a disk file as virtual memory when the heap has been exhausted.
Or, you might want to use an allocation scheme based on garbage collection. Whatever your
need, it is relatively easy to overload these operators, and this recipe shows the process.

Step-by-Step
Overloading new and delete involves the following steps:
1. To overload new for single objects, implement operator new(). Have it return
a pointer to a block of memory that is large enough to hold the object.

2. To overload new for arrays of objects, implement operator newl[1(). Have it return
a pointer to a block of memory that is large enough to hold the array.

3. To overload delete for a pointer to a single object, implement operator delete().
Have it release the memory used by the object.

452

Herb Schildt's C++ Programming Cookbook

4. To overload delete for a pointer to an array of objects, implement operator delete[]().
Have it release the memory used by the array.

Discussion

Before we begin, an important point needs to be made. The new and delete operators can
be overloaded globally or relative to a specific class. When overloaded globally, the new
versions of new and delete replace the default versions when allocating memory for the
built-in types and for any class that does not provide its own overload of new and delete.
Unfortunately, this can sometimes cause undesirable side effects. For example, third-party
code might use new and delete, and this use could be incompatible with the overloaded
versions. For this reason, I do not recommend overloading new and delete globally, except in
the rare cases. Instead, I recommend overloading new and delete on a class-by-class basis.
When new and delete are overloaded by a class, they are used only when allocating memory
for objects of the class. This eliminates the potential for side effects outside the class. This is
the approach used by this recipe, and the discussion that follows assumes that new and
delete are being overloaded relative to a class through the use of member functions.

There are two basic forms of new and delete. The first is for allocating and releasing
single objects. The second is for allocating and releasing arrays of objects. Both forms can be
overloaded, and both are described here. We will begin with the forms that allocate and
release single objects.

Here are the general forms of new and delete overloaded for single objects:

// Allocate memory for an object.

void *operator new(size_t size)

{
// Allocate memory for the object and return a pointer to
// the memory. The size in bytes of the object is passed in size.
// Throw bad_alloc on failure.

)

/ / Release previously allocated memory.
void operator delete(void *ptr)
{

/ / Free memory pointed to by ptr.

)

The size parameter will contain the number of bytes needed to hold the object being
allocated. This is the amount of memory that your version of new must allocate. (size_tis a
typedef for some form of an unsigned integer.) The overloaded new function must return a
pointer to the memory that it allocates, or throw a bad_alloc exception if an allocation error
occurs. Beyond these constraints, the overloaded new can do anything else you require.
When you allocate an object using new (whether your own version or not), the object's
constructor is automatically called.

The delete function receives a pointer to the region of memory to be freed. It must
release the previously allocated memory back to the system. When an object is deleted, its
destructor is automatically called. It is important that delete be used only on a pointer that
was previously allocated via new.

Chapter 7: Potpourri 453

If you want to be able to allocate arrays of objects using your own allocation system,
you will need to overload new[] and delete[], which are the array forms of new and
delete. Here are their general forms:

// Allocate an array of objects.

void *operator new|](size_t size)

{
// Allocate memory for the array and return a pointer to it.
// The number of bytes to allocate are passed in size.
// Throw bad_alloc on failure.

}

/ / Delete an array of objects.
void operator delete[](void *ptr)
{
/ / Free memory pointed to by ptr.
}

When allocating an array, the constructor for each object in the array is automatically
called. When freeing an array, each object's destructor is automatically called. You do not
have to provide explicit code to accomplish these actions.

Example

The following example overloads new and delete for the three_d class. Both the object and
the array form of each are overloaded. For the sake of simplicity, no new allocation scheme
is used. Instead, the overloaded operators will simply invoke the standard C library
functions malloc() and free(). The malloc() function allocates a specified number of bytes
and returns a pointer to them. It returns null if the memory cannot be allocated. Given a
pointer to memory previously allocated by malloc(), free() releases the memory, making it
available for re-use. In general, malloc() and free() parallel the functionality of new and
delete, but in a less streamlined fashion.

// Overload new, new[], delete, and delete[] for the three d class.
//

// This program uses the C functions malloc() and free()

// to allocate and release dynamic memory. They require the

// header<cstdlibs>.

#include <iostream>
#include <cstdlibs>
#include <new>

using namespace std;

// A class that encapsulates 3-dimensional coordinates.
class three d {

int x, vy, z; // 3-D coordinates
public:

three d() { x =y =2z = 0; }

454 Herb Schildt's C++ Programming Cookbook

three d(int i, int j, int k) { x = i; y = j; z = k; }

// Set the coordinates of an object after it is created.
void set(int i, int j, int k) { x = 1i; v = j; z = k; }

// Overload new and delete for three d objects.
void *operator new(size t size);
void operator delete(void *p);

// Overload new[] and delete[] for three d arrays.
void *operator newl] (size t size);
void operator deletel[] (void *p);

// Let the overloaded inserter be a friend.
friend ostream &operator<< (ostream &strm, three d op);

}i

// The three d inserter is a non-member operator function.
ostream &operator<< (ostream &strm, three d op) ({
strm << op.x << ", " << Op.y << ", " << op.z << endl;

return strm;

}

// Overload new for three d.
void *three d::operator new(size t size)

{

void *p;

cout << "Using overloaded new for three_d.\n";
p = malloc(size);
if (1p) {

bad_alloc ba;

throw ba;

}

return p;

}

// Overload delete for three d.

void three d::operator delete(void *p)

{
cout << "Using overloaded delete for three_d.\n";
free(p) ;

}

// Overload new[] for three d arrays.
void *three_d::operator newl[] (size_t size)

{

void *p;

cout << "Using overloaded new[] for three d.\n";
malloc (size) ;

) A

p
d alloc ba;

(!
ba

Chapter 7:
throw ba;
1
return p;
}
// Overload delete[] for three d arrays.
void three d::operator deletel[] (void *p)
{
cout << "Using overloaded delete[] for three d.\n";
free(p) ;
}
int main/()
{
three d *pl, *p2;
int 1i;
// Allocate a three d object.
try {
pl = new three d (10, 20, 30);
} catch (bad_alloc xa)
cout << "Allocation error for pl.\n";
return 1;
1
cout << "Coordinates in the object pointed to by pl: " << *pl;

// Free the object.
delete pl;

cout << endl;

// Allocate a three d array.

try {

}

}

p2 = new three d [10]; //
catch (bad alloc xa) ({
cout << "Allocation error
return 1;

allocate an array

for p2.\n";

// Assign coordinates to three of p2's elements.
p2[1] .set (99, 88, 77);
p2[5] .set (-1, -2, -3);
p2[8] .set (56, 47, 19);

cout << "Contents of a dynamic three d array:\n";
for(i=0; 1<10; i++) cout <<

// Free the array.
delete [] p2;

return O;

p2[il;

Potpourri

455

456

Herb Schildt's C++ Programming Cookbook

The output is shown here:

Using overloaded new for three d.
Coordinates in the object pointed to by pl: 10, 20, 30
Using overloaded delete for three d.

Using overloaded new[] for three d.
Contents of a dynamic three d array:

0o, 0, O
99, 88, 77
0o, 0, O
0o, 0, O
0, 0, O
-1, -2, -3
0, 0, O
0, 0, O
56, 47, 19
0, 0, O

Using overloaded delete[] for three d.

Options and Alternatives

C++ supports a "no-throw" version of new. This option makes new act like it did in early
versions of C++ in which it returned null if memory could not be allocated. (Modern
versions of C++ throw a bad_alloc exception when new fails.) You can create overloaded
versions of the no-throw alternative by using these forms of operator new() and
operator newl[]():

/ / Nothrow version of new.

void *operator new(size_t size, const nothrow_t ¬_used)

{
// Allocate the memory for the object. If successful, return a
// pointer to the memory. Otherwise, return null.

}

// Nothrow version of new[|.
void *operator new|[](size_t size, const nothrow_t ¬_used)
{
// Allocate the memory for the array. If successful, return a
// pointer to the memory. Otherwise, return null.

}

The type nothrow_t is defined in <new>.
When using the no-throw version, specify the object nothrow in the call to new and
watch for a null return value, as shown here:

ptr = new(nothrow) int;

if (Iptr) {
cout << "Allocation failed.\n";
// handle the failure

}

The nothrow object is an instance of nothrow_t and is provided by <new>.

Chapter 7: Potpourri 457

”~

_ Overload the Increment and Decrement Operators

I Key Ingredients

Headers Classes Functions

ret-type operator++()
ret-type operator++(int not_used)
ret-type operator——()
ret-type operator——(int not_used)

As it relates to operator overloading, the ++ (increment) and the — — (decrement) operators
generate the most questions. Although neither is difficult to overload, it is easy to get it
slightly wrong, which makes the operator work correctly in some cases, but fail in others.
This can result in bugs that are difficult to diagnose. The increment and decrement operators
also have two different forms, prefix and postfix, both of which must be overloaded in order
for the operators to work correctly in all cases. This recipe shows how to handle these
sometimes-troubling operators.

Step-by-Step
To overload the increment and decrement operators using member functions involves
these steps:

1. To overload the prefix form of the increment operator, create an operator++()
function. Inside that function, increment the invoking object and return the result.

2. To overload the postfix form of the increment operator, create an operator++(int)
function. Inside that function, create a temporary object that contains the original
value of the operand. Then, increment the invoking object. Finally, return the
original value.

3. To overload the prefix form of the decrement operator, create an operator——()
function. Inside that function, decrement the invoking object and return the result.

4. To overload the postfix form of the decrement operator, create an operator——(int)
function. Inside that function, create a temporary object that contains the original
value of the operand. Then, decrement the invoking object. Finally, return the
original value.

Discussion

There are two forms of the ++ and — — operators: prefix and postfix. The prefix form increments
its operand and returns the result. The postfix form stores the operand's initial value, increments
the operand, and then returns the original value. Both of these forms can be overloaded, and
each is overloaded by its own function.

Most often, the increment and decrement operators are implemented as member
functions of the class for which they are defined. This is the approach used by this recipe.

458

Herb Schildt's C++ Programming Cookbook

However, they can also be implemented by non-member functions, and this is described in
the Options and Alternatives section for this recipe.

Here are the general forms for operator++() and operator— —() when implemented as
member functions. Both the prefix and postfix forms are shown:

// Prefix increment
ret-type operator++() {
// Increment the operand and return the result.

)

/ / Postfix increment

ret-type operator++(int not_used) {
// Store a copy of the operand's original value.
// Then increment the operand.
// Finally, return the original value.

}

// Prefix decrement
ret-type operator——() {
// Decrement the operand and return the result.

}

/ / Postfix decrement

ret-type operator——(int not_used) {
// Store a copy of the operand's original value.
// Then decrement the operand.
// Finally, return the original value.

}

Pay special attention to the not_used parameter. It is usually zero and is not normally used
within the function. It is simply a way for C++ to indicate which function to call.
There are three keys to correctly overloading increment or decrement:

* You must overload both the prefix and postfix forms.

* When implementing the prefix form, you must first increment or decrement the
value and then return the altered value.

¢ When implementing the postfix form, you must remember to store the initial value
and then return that value. Don't accidentally return the altered value.

If you follow these rules, your increment and decrement operators will behave like the
built-in ones. Failure to follow them can lead to problems. For example, if you don't
overload both the prefix and postfix forms of an operator, then the form you don't overload
won't be able to be used. Furthermore, if you don't overload the postfix form, some
compilers will report an error if you try to use the postfix operator, and will not compile
your program. However, other compilers will simply report a warning and then use the
prefix form instead. This will cause the postfix operator to act in an unexpected manner.

Chapter 7: Potpourri 459

Example
The following example overloads increment and decrement for the three_d class. Both the
prefix and postfix forms are provided.

// Overload ++ and -- for three d.
#include <iostream>
using namespace std;

// A class that encapsulates 3-dimensional coordinates.
class three d {

int x, vy, z; // 3-D coordinates
public:

three d() { x =y =2z = 0; }

three d(int i, int j, int k) { x = i; v = 3; z = k; }

// Overload ++ and --. Provide both prefix and postfix forms.
three d operator++(); // prefix
three d operator++ (int notused); // postfix

three d operator--(); // prefix
three_d operator--(int notused); // postfix

// Let the overloaded inserter be a friend.
friend ostream &operator<< (ostream &strm, three d op);

Vi

// Overload prefix ++ for three d.
three d three d::operator++() {
X++;
Y++i
Z++;

return *this;

}

// Overload postfix ++ for three d.
three d three d::operator++(int notused) ({
three d temp = *this;

X++;
V++i
Z++;

return temp;

}

// Overload prefix -- for three d.
three d three d::operator--() ({
X--;

460

Herb Schildt's C++ Programming Cookbook

return *this;

}

// Overload postfix -- for three d.
three d three d::operator-- (int notused) {
three d temp = *this;

return temp;

}

// The three d inserter is a non-member operator function.
ostream &operator<< (ostream &strm, three d op) ({
strm << op.x << ", " << Op.y << ", " << op.z << endl;

return strm;

}

int main()

{

three d objA(1l, 2, 3), objB(10, 10, 10), objC;

cout << "Original value of objA: " << objA;
cout << "Original value of objB: " << objB;
// Demonstrate ++ and -- as stand-alone operations.
++0bjA;

++0bjB;

cout << "++objA: " << objA;

cout << "++0bjB: " << objB;

--objAa;

--objB;

cout << "--objA: " << obja;

cout << "--0bjB: " << objB;

ObjA++;

ObjB++;

cout << endl;

cout << "oObjA++: " << ObjA;
cout << "objB++: " << objB;
objA--;
objB--;
cout << "objA--: " << objA;

cout << "objB--: " << objB;

Chapter 7: Potpourri 461

cout << endl;

// Now, demonstrate the difference between the prefix
// and postfix forms of ++ and --.

objC = ObjA++;
cout << "After objC = objA++\n objC: " << objC <<" objA: "
<< objA << endl;

objC = objB--;
cout << "After objC = objB--\n objC: " << objC <<" objB: "
<< objB << endl;

objC = ++0bjA;
cout << "After objC = ++objA\n objC: " << objC <<" objA: "
<< ObjA << endl;

objC = --0objB;
cout << "After objC = --objB\n objC: " << objC <<" objB: "
<< objB << endl;

return 0;

}
The output is shown here:

Original value of objA: 1, 2, 3
Original value of objB: 10, 10, 10
++0bjA: 2, 3, 4

++objB: 11, 11, 11

--objA: 1, 2, 3

--objB: 10, 10, 10

ObjA++: 2, 3, 4
objB++: 11, 11, 11
objA--: 1, 2, 3

objB--: 10, 10, 10

After objC = objA++
objC: 1, 2, 3
objA: 2, 3, 4

After objC = objB--

objC: 10, 10, 10
objB: 9, 9, 9

After objC =
objC: 3, 4, 5
objA: 3, 4

After objC =
objC: 8, 8, 8
objB: 8, 8

462

Herb Schildt's C++ Programming Cookbook

Options and Alternatives

Although using member functions to overload the increment and decrement operators is
the most common approach, you can also use non-member functions. You might want to do
this when overloading the operators relative to an enumeration, or when you are defining
increment and decrement relative to a class to which you do not have the source code.
Whatever the reason, it is an easy task. The non-member forms of the increment and
decrement operators are shown here:

/ / Prefix increment
ret-type operator++(type &op) {
// Increment the operand and return the result.

}

// Postfix increment

ret-type operator++(type &op, int not_used) {
// Store a copy of the operand's original value.
// Then increment the operand.
// Finally, return the original value.

)

/ / Prefix decrement
ret-type operator——(type &op) {
/ / Decrement the operand and return the result.

}

// Postfix decrement

ret-type operator——(type &op, int not_used) {
// Store a copy of the operand's original value.
// Then decrement the operand.
// Finally, return the original value.

)

Notice that the operand is passed via reference. This is necessary to allow the functions to
alter the operand.

In general, when you want to increment or decrement an object, overloading the ++
and — — operators is the best approach. In some cases, however, you may find that using
functions is better. For example, you can create a function called inc() that increments an
object and dec() that decrements an object. You might want to do this when you don't want
to alter the value of the object. The inc() or dec() function could just return the new value,
but leave the object unmodified. You could also do this by overloading the increment and
decrement operators such that they do not alter the operand, but this would make them
work in a way that is inconsistent with their normal semantics.

You should be careful when working with legacy C++ programs where the increment
and decrement operators are concerned. In older versions of C++, it was not possible to
specify separate prefix and postfix versions of an overloaded ++ or ——. The prefix form was
used for both. Modern compilers will usually flag a warning in this situation, but it's best
not to count on it. It is better to confirm that the increment and decrement are properly
overloaded. If they are not, you need to upgrade them.

Chapter 7: Potpourri 463

'

Create a Conversion Function

I Key Ingredients

Headers Classes Functions

operator target-type()

Sometimes, you will want to use a class object in an expression involving another type of
data. Although overloaded operators can provide a means of doing this, sometimes, all that
you really want is a simple type conversion from the class type to the target type. To handle
these cases, C++ lets you create a conversion function. A conversion function automatically
converts a class type into the target type. This makes the conversion function one of C++'s
most useful features. Unfortunately, it is also one of its most overlooked features. This
recipe shows how to create a conversion function. In the process, it sheds some light on this
often-ignored capability.

Step-by-Step

To create a conversion function involves these steps:

1. To provide a conversion from a class type to a target type, add a conversion function
to the class. A conversion function is based on the operator keyword, as described in
the discussion that follows.

2. Inside the conversion function, convert the object into the target type.

3. Return the result, which must be a value compatible with the target type.

Discussion

A conversion function makes use of the operator keyword. The general form of a conversion
function is shown here:

operator target-type() {
// Create a value that contains the conversion.
return value;

}

Here, target-type is the target type that you are converting your class to, and value is the
outcome of the conversion. The object being converted is passed through this. Conversion
functions return data of type target-type, and no other return type specifier is allowed. Also,
no parameters may be included. A conversion function must be a member of the class for
which it is defined. Conversion functions are inherited and they may be virtual.

Once you have created a conversion function, an object of its class can be used within an
expression of the target type. This means that it can be operated on through operators
(without having to overload them), as long as the expression type is the same as the target

464

Herb Schildt's C++ Programming Cookbook

type of the conversion function. Furthermore, a conversion function lets you pass an object
as an argument to a function as long as the parameter type is the same as the target type.
These are powerful features, which can be obtained with almost no programming effort.

The best way to appreciate the power of a conversion function is to work through an
example. Assume the three_d class shown here:

class three 4 {
int x, y, z; // 3-D coordinates
public:
three d() { x =y =2 = 0; }
three d(int i, int j, int k) {x = i; vy = j; z = k; }

//
Vi

You can create a conversion to int by adding the following function as a member:

operator int() { return x + y + z; }

This converts a three_d object into an integer that contains the sum of the coordinates.
Assuming the above conversion, the following sequence is now valid:

three d objA(1, 2, 3);
int result;
result = 10 + objA;

After this executes, the result will contain the value 16 (10 + 1 + 2 + 3). Because 10 is an int
value, when objA is added to it, operator int() is automatically invoked on objA to supply
the conversion.

Example

The following example puts into action the preceding discussion. It creates a conversion
from three_d to int. It then uses that conversion to use a three_d object in an integer
expression and to pass three_d objects as arguments to functions that specify an integer
parameter.

// Create conversion functions for three d.
#include <iostream>
using namespace std;

// A class that encapsulates 3-dimensional coordinates.
class three 4 {

int x, y, z; // 3-D coordinates
public:

three d() { x =y =2 = 0; }

three d(int i, int j, int k) { x = i; y = j; z = k; }

// A conversion to int.
operator int() { return x + y + z; }

Chapter 7:

// Let the overloaded inserter be a friend.
friend ostream &operator<< (ostream &strm, three d op);

Vi

// The three d inserter is a non-member operator function.
ostream &operator<< (ostream &strm, three d op) ({
strm << op.x << ", " << Op.y << ", " << op.z << endl;

return strm;

}

// Return the negation of v.
int neg(int v) {

return -v;
}

// Return true if x is less than y.
bool 1t (int x, int y) {

if (x < y) return true;

return false;

}

int main ()

{
three d obja(1, 2, 3), objB(-1, -2, -3);
int result;

cout << "Value of objA: " << objA;
cout << "Value of objB: " << objB;
cout << endl;

// Use objA in an int expression.

cout << "Use a three d object in an int expression: ";
result = 10 + obja;

cout << "10 + ObjA: " << result << "\n\n";

// Pass objA to a function that takes an int argument.
cout << "Pass a three d object to an int parameter: ";
result = neg(obja);

cout << "neg(objA): " << result << "\n\n";

cout << "Compare the sum of the coordinates by use of 1t(): ";

if (1t (ocbjA, objB))
cout << "objA less than objB\n";
else 1f (1t (objB, obja))
cout << "objB less than objA\n";
else
cout << "objA and objB both sum to the same value.\n";

return 0;

Potpourri

465

466 Herb Schildt's C++ Programming Cookbook

The output is shown here:

Value of obja: 1, 2, 3
Value of objB: -1, -2, -3

Use a three d object in an int expression: 10 + objA: 16
Pass a three d object to an int parameter: neg(objA): -6

Compare the sum of the coordinates by use of 1t(): objB less than objA

Options and Alternatives

You can create different conversion functions to meet different needs. For example, you
could define conversions from three_d to int, double, or long. Each will be applied
automatically, as determined by the type of the conversion needed.

In some cases, instead of using a conversion function, you can achieve the same result
(but not as easily) by overloading the operators that you will be using. For example, in the
preceding example, you could overload the + for operations involving three_d objects and
integers. Of course, this would still not allow a three_d object to be passed to a function that
uses an int parameter.

rd

Create a Copy Constructor

I Key Ingredients

Headers Classes Functions

classname (const classname &obj)

One commonly overlooked but incredibly important feature of C++ is the copy constructor.
A copy constructor defines how a copy of an object is made. Because C++ automatically
supplies a default copy constructor for a class, not all classes need to define one explicitly.
However, for many classes, the default copy constructor is insufficient, and its use will lead
to trouble. This is because the default copy constructor creates an identical copy of the
original. If an object holds a resource, such as a pointer to memory or a file stream object,
then if a copy is made, that copy will also point to the same memory or attempt to use the
same file. In cases like this, problems are soon to follow. The solution is to define an explicit
copy constructor that duplicates an object, but avoids the potential trouble. Towards this
end, this recipe describes how to create a copy constructor and reviews the circumstances
under which it is needed.

Chapter 7: Potpourri 467

Step-by-Step

To create a copy constructor involves these steps:

1. Create a constructor for the class that takes only one parameter, which is a reference
to the object being copied.

2. Inside the copy constructor, copy the object in a way compatible with the class.

Discussion

Let's begin by examining the problem that a copy constructor is designed to solve. By
default, when one object is used to initialize another, a field-by-field copy of the original is
made. For scalar fields (which includes pointers), an identical, bitwise copy of the field
results. Although this is perfectly adequate for many cases—and often is exactly what you
want to happen—there are situations in which an identical copy should not be used. One of
the most common is when an object uses dynamically allocated memory. For example,
assume a class called myclass that uses dynamically allocated memory for some purpose
and that a pointer to this memory is held in a field. Further assume that this memory

is allocated when an object is constructed and freed when its destructor executes. Finally,
assume a myclass object called A, which is used to initialize B, as shown here:

myclass B = A;

If an identical copy of A is made and assigned to B, then instead of B holding a pointer to its
own piece of dynamically allocated memory, B will be using the same piece of memory as
A. This will almost certainly lead to trouble. For example, when A and B are destroyed, the
same piece of memory will be freed twice! Once for A and then again for B.

A similar type of problem can occur in two additional ways. The first occurs when a copy
of an object is made when it is passed as an argument to a function. This object goes out of
scope (and is destroyed) when the function returns. The second occurs when a temporary
object is created as a return value from a function. As you may know, temporary objects are
automatically created to hold the return value of a function. This temporary object goes out
of scope after the expression containing the function call finishes. In both cases, if the
temporary objects act on a resource, such as through a pointer or an open file, then those
actions will have side effects. In the case of myclass, this would result in the same block of
memory being freed two or more times. Clearly, such a situation must be avoided.

To solve the type of problems just described, C++ allows you to create an explicit copy
constructor for a class. The copy constructor is called when one object initializes another. All
classes have a default copy constructor, which produces a member-by-member copy. When
you define your own copy constructor, it is used instead.

Before we continue, it is important to understand that C++ defines two distinct types of
situations in which the value of one object is given to another. The first is assignment. The
second is initialization, which can occur in three ways:

¢ When one object explicitly initializes another, such as in a declaration,
* When a copy of an object is made to be passed to a function, or

* When a temporary object is generated (most commonly, as a return value).

468

Herb Schildt's C++ Programming Cookbook

The copy constructor applies only to initializations. The copy constructor does not apply
to assignments.
The most common general form of a copy constructor is shown here:

classname (const classname &obj) {
// Body of copy constructor.
}

Here, obj is a reference to the object on the right side of the initialization. It is permissible for
a copy constructor to have additional parameters as long as they have default arguments
defined for them. However, in all cases, the first parameter must be a reference to the object
doing the initializing. This reference can also be const and/or volatile.

Again, assume a class called myclass and an object of type myclass called A. Also
assuming that func1() takes a myclass parameter and that func2() returns a myclass object,
each of the following statements involves initialization:

myclass B = A; // A initializing B

myclass B(A); // A initializing B
funcl (4) ; // A passed as a parameter
A = func2(); // A receiving a temporary, return object

In the first three cases, a reference to A is passed to the copy constructor. In the fourth,
a reference to the object returned by func2() is passed to the copy constructor.

Inside a copy constructor, you must manually handle the duplication of every field
within the object. This, of course, gives you a chance to avoid potentially harmful situations.
For example, in myclass just described, the new myclass object could allocate its own
memory. This would allow both the original and the copy to be equivalent but fully separate
objects. It also avoids the problem of both objects using the same memory because freeing
one object's memory would not affect the other. If necessary, the memory could be initialized
to contain the same contents as the original.

In some cases, the same problems that can occur when making a copy of an object also
occur when one object is assigned to another. The reason is that the default assignment
operator makes a member-by-member, identical copy. You can avoid problems by overloading
operator=() so that you handle the assignment process yourself. See Operator Overloading
Basic Techniques for details on overloading assignment.

Example

The following demonstrates the copy constructor. Although very simple, it clearly shows
when a copy is and is not called. (A practical use of the copy constructor is shown in the
Bonus Example that follows.)

// Demonstrate a copy constructor.

#include <iostream>
using namespace std;

// This class declares a copy constructor.

Chapter 7: Potpourri 469

class sample {
public:
int v;

// Default constructor.
sample () {
v = 0;
cout << "Inside default constructor.\n";

}

// Parameterized constructor.
sample (int i) {
v = i;
cout << "Inside parameterized constructor.\n";

}

// Copy constructor.
sample (const sample &obj) {
v = obj.v;
cout << "Inside copy constructor.\n";
1
Vi

// Pass an object to a function. The copy constructor
// i1s called when a temporary object is created to
// hold the value passed to x.
int timestwo (sample x) {
return x.v * x.v;
}

// Return an object from a function. The copy constructor
// is called when a temporary object is created for the return value.
sample factory(int i) {

sample s (i) ;

return s;

}

int main()

{

cout << "Create samp(8).\n";

sample samp (8) ;

cout << "samp has the value " << samp.v << endl;

cout << endl;

cout << "Create samp2 and initialize it with samp.\n";
sample samp2 = samp;

cout << "samp2 has the value " << samp2.v << endl;

cout << endl;

cout << "Pass samp to timestwo().\n";

470 Herb Schildt's C++ Programming Cookbook

cout << "Result of timestwo(samp): " << timestwo (samp) << endl;
cout << endl;

cout << "Creating samp3.\n";
sample samp3;

cout << endl;

cout << "Now, assign samp3 the value returned by factory(10).\n";
samp3 = factory(10);
cout << "samp3 now has the value " << samp3.v << endl;

cout << endl;

// Assignment does not invoke the copy constructor.

cout << "Execute samp3 = samp.\n";

samp3 = samp;

cout << "Notice that the copy constructor is not used "
<< "for assignment.\n";

return 0;

}
The output is shown here:

Create samp(8) .
Inside parameterized constructor.
samp has the value 8

Create samp2 and initialize it with samp.
Inside copy constructor.
samp2 has the value 8

Pass samp to timestwo() .
Inside copy constructor.
Result of timestwo (samp): 64

Creating samp3.
Inside default constructor.

Now, assign samp3 the value returned by factory(10).
Inside parameterized constructor.

Inside copy constructor.

samp3 now has the value 10

Execute samp3 = samp.
Notice that the copy constructor is not used for assignment.

As you can see, the copy constructor is called when one object initializes another. It is not
called during assignment. One other point: the statement

sample samp2 = samp;

Chapter 7: Potpourri 471

can also be written as
sample samp2 (samp) ;

Both forms result in the copy constructor being used to create a copy of samp.

Bonus Example: A Safe Array that Uses Dynamic Allocation

The preceding example clearly showed when a copy constructor is and is not called.
However, it did not illustrate the type of situation in which one is needed. This example
does. It demonstrates the necessity of the copy constructor by developing another
implementation of a "safe array,” which is an array that prevents boundary overruns and
underruns. The approach used here relies on dynamically allocated memory to hold the
underlying array. As you will see, this technique requires an explicit copy constructor to
avoid problems.

Before we begin, it is useful to contrast this approach with the one shown in Overload the
Subscripting Operator [] earlier in this chapter. In that recipe, the example created an array
type called safe_array that encapsulated a static array that actually held the elements. Thus,
each safe_array was backed by a full-length static array. As a result, if a very large safe array
was needed, the resulting safe_array object would also be very large because it would
encapsulate the entire array.

The version developed here uses a different approach. Called dyn_safe_array, it
dynamically allocates memory for the array and stores only a pointer to that memory. This
has the advantage of making the safe-array objects smaller—much smaller in some cases.
This makes them more efficient when they are passed to functions, for example. Of course,
it takes a bit more work to implement a safe array that uses dynamic memory, because both
a copy constructor and an overloaded assignment operator are needed. Like safe_array
shown earlier, dyn_safe_array overloads the subscripting operator [] to allow normal,
array-like subscripting to access the elements in the array.

The dyn_safe_array class is generic, which means that it can be used to create any type of
array. The number of elements in the array is passed as a non-type argument in its template
specification. Its constructor then allocates sufficient memory to hold the array of the desired
size and type. A pointer to this memory is stored in aptr. The destructor for dyn_safe_array
automatically frees this memory when an object goes out of scope. Otherwise, because the []
is overloaded, a dyn_safe_array can be used just like a normal array:.

When one dyn_safe_array is used to initialize another, the copy constructor is called. It
creates a copy of the original object by first allocating memory for the array and then
copying elements from the original array into the newly allocated memory. This way, each
object's aptr points to its own array. Without the copy constructor, an identical copy of a
dyn_safe_array would be made, which would result in two objects having aptrs that
pointed to the same memory. Among other potential troubles, this would result in an
attempt to free the same memory more than once when the objects go out of scope. The
copy constructor prevents this.

The same type of problem that the copy constructor prevents can also occur when one
dyn_safe_array object is assigned to another. To avoid this problem, the assignment
operator is also overloaded so that the contents of the array are copied, but the dynamically
allocated memory used by each object remains separate.

472 Herb Schildt's C++ Programming Cookbook

One last point: The copy constructor and the overloaded assignment operator display
a message each time they are called. This is simply for illustration. Normally, neither would
generate any output.

// A generic safe-array class that prevents array boundary errors.
// It uses the subscripting operator to access the array elements.
// This version differs from the approach used in the recipe:

/7

// Overload the Subscripting Operator []

//

// because it allocates memory for the array dynamically rather

// than statically.

//

// An explicit copy constructor is implemented so that a copy

// of a safe array object uses its own allocated memory. Therefore,
// the original object and the copy DO NOT point to the same

// memory. The assignment operator is also overloaded for the same
// reason. In both cases, the contents of the array are copied so
// that both the original array and the copy contain the same values.

#include <iostream>
#include <new>
#include <cstdlib>

using namespace std;

// A generic safe-array class that dynamically allocates memory
// for the array. The length of the array is passed as a non-type
// argument in the template specification.
template <class T, int len> class dyn safe array ({

T *aptr; // pointer to the memory that holds the array

int length; // number of elements in the array
public:

// The dyn safe array constructor.
dyn_safe array();

// The dyn safe array copy constructor.
dyn safe array(const dyn safe array &obj) ;

// Release the allocated memory when a dyn safe array object
// goes out of scope.
~dyn_safe array() {
delete [] aptr;
}

// Overload assignment.
dyn safe array &operator=(const dyn safe array<T,len> &rh op);

// Use the subscripting operator to access elements in
// the safe array.
T &operator[] (int 1i);

}i

// Return the size of the array.
int getlen() { return length; }

// This 1is dyn safe array's constructor.

template <class T,

int len>
dyn_safe_array<T, lens>::dyn safe_array() (

try {
// Allocate the array.
aptr = new T[len];
} catch(bad_alloc ba) {
cout << "Can't allocate array.\n";
// Take appropriate action here. This is just
// a placeholder response.
exit (1) ;

}

// Initialize the array elements to their default value.
for(int i=0; i < len; ++1) aptrl[i] = T();

length = len;

// This is dyn safe array's copy constructor.

template <class T,

}

int len>
dyn_safe_array<T,

Chapter 7: Potpourri 473

len>::dyn_safe array(const dyn_safe array &obj) {

cout << "Using dyn safe array's copy constructor to make a copy.\n";

try {
// Allocate an array of the same size as the
// one used by obj.
aptr = new T[obj.length];
} catch(bad_alloc ba) {
// Take appropriate action here. This is just
// a placeholder response.
cout << "Can't allocate array.\n";
exit (1) ;
}
length = obj.length;
// Copy contents of the array.
for(int i=0; 1 < length; ++1i)
aptr[i] = obj.aptr[i];

// Overload assignment so that a copy of the array is made.
// The copy is stored in an allocated memory that is separate
// from that used by the right-hand operand.
//

template<class T,

int len> dyn safe array<T, len> &

474 Herb Schildt's C++ Programming Cookbook

dyn_safe_array<T, lens>::operator=(const dyn safe array<T, len> &rh op) ({
cout << "Assigning one dyn safe array object to another.\n";

// If necessary, release the memory currently used by the object.
if (aptr && (length != rh op.length)) ({

// Delete the previously allocated memory.
delete aptr;

try {
// Allocate an array of the same size as the

// one used by rh op.
aptr = new T[rh op.length];

} catch(bad_alloc ba) ({
// Take appropriate action here. This is just
// a placeholder response.
cout << "Can't allocate array.\n";
exit (1) ;

}

}

length = rh op.length;

// Copy contents of the array.

for(int i=0; i < length; ++1i)
aptr[i] = rh op.aptrli];
return *this;

}

// Provide range checking for dyn safe array by overloading

// the [] operator. Notice that a reference is returned.

// This lets an array element be assigned a value.

template <class T, int len> T &dyn_safe array<T, lens::operator(] (int i)

if(i < 0 || i > length) {
// Take appropriate action here. This is just
// a placeholder response.
cout << "\nIndex value of " << i << " is out-of-bounds.\n";
exit (1) ;
1

return aptr[i];

}

// A simple function for demonstration purposes.
// When called, the copy constructor will be used
// to create a copy of the argument passed to x.
template <class T, int len>
dyn_safe _array<T, len> f(dyn safe array<T, len> x) ({

cout << "f() is returning a copy of x.\n";
return x;

}

Chapter 7:

// This is a simple class used to demonstrate an array of objects.
// Notice that the default constructor gives x the value -1.
class myclass {

public:
int x;
myclass (int i) { x = 1i; };
myclass() { x = -1; }

}i

int main/()

{

// Use the integer array.
dyn_safe array<int, 5> i_ar;

for(int i=0; i < i _ar.getlen(); ++1i) i ar[i] = i;
cout << "Contents of i _ar: ";
for(int i=0; i < i_ar.getlen(); ++i) cout << i ar[i] << " ";

cout << "\n\n";

// To generate a boundary overrun, uncomment the following line:
// i_ar[19] = 10;

// To generate a boundary underrun, uncomment the following line:
// 1 ar[-2] = 10;

Potpourri

// Create a copy of i ar. This will invoke dyn safe array's copy constructor.

cout << "Create i_ar2 and initialize it with i_ar. This results\n"

<< "in dyn safe array's copy constructor being called.\n\n";

dyn safe array<int, 5> i_ar2 = i_ar;
cout << "Contents of i ar2: ";
for(int i=0; i < i_ar2.getlen(); ++1) cout << i_ar2[i] << " ";

cout << "\n\n";

// Create another safe array for integers, but don't assign
// it any values. This means that its elements will contain
// their default values.

cout << "Create i_ar3.\n";

dyn_safe_array<int, 5> i_ar3;

cout << "Original contents of i _ar3: ";
for(int i=0; i < i_ar3.getlen(); ++i) cout << i_ar3[i] << " ";
cout <<"\n\n";

// Now, pass i _ar3 to f() and assign the result to i _ar:
cout << "Now, this line will execute: i _ar3 = f£(i_ar);\n"
<< "This will result in the following sequence of events:\n"
<< " 1. dyn safe array's copy constructor is called to make a\n"
<< " copy of i ar that is passed to the x parameter of £().\n"
<< " 2. The copy constructor is called again when a copy\n"
<< " is made for the return value of f£().\n"
<< " 3. The overloaded assignment operator is called to\n"
<< " assign the result of £() to i _ar3.\n\n";

i_ar3 = f(i_ar);

475

476 Herb Schildt's C++ Programming Cookbook

cout << "Contents of i_ar3 after receiving value from f(i_ar): ";
for(int i=0; i < i_ar3.getlen(); ++i) cout << i_ar3[i] << " ";
cout << "\n\n";

cout << "Of course, dyn safe array works with class types, too.\n";
dyn safe array<myclass, 3> mc_ar;

cout << "Original contents of mc_ar: ";

for(int i=0; i < mc_ar.getlen(); ++i) cout << mc_ar[i].x << " ";
cout << endl;

mc_ar[0].x = 9;

mc_ar([l].x 8;

mc_ar[2] .x = 7;

cout << "Values in mc_ar after setting them: ";

for(int i=0; i < mc_ar.getlen(); ++i) cout << mc_ar[i].x << " ";
cout << "\n\n";

cout << "Now, create mc_ar2 and then execute this statement:\n"

<< " mc_ar2 = f(mc_ar);\n\n";
dyn safe_ array<myclass, 3> mc_ar2;
mc_ar2 = f(mc_ar);
cout << "Contents of mc_ar2 after receiving f(mc_ar): ";
for(int i=0; i < mc_ar2.getlen(); ++i) cout << mc_ar2[i].x << " ";

cout << endl;

return O0;

The output is shown here:
Contents of i ar: 0 1 2 3 4

Create i_ar2 and initialize it with i_ar. This results
in dyn safe_array's copy constructor being called.

Using dyn safe array's copy constructor to make a copy.
Contents of i _ar2: 0 1 2 3 4

Create i_ar3.
Original contents of i_ar3: 0 0 0 0 O

Now, this line will execute: i ar3 = f(i_ar);
This will result in the following sequence of events:
1. dyn safe _array's copy constructor is called to make a
copy of i _ar that is passed to the x parameter of £().
2. The copy constructor is called again when a copy
is made for the return value of f().
3. The overloaded assignment operator is called to
assign the result of f() to i_ar3.

Using dyn safe array's copy constructor to make a copy.
f() is returning a copy of x.

Using dyn safe array's copy constructor to make a copy.
Assigning one dyn safe array object to another.

Chapter 7: Potpourri 477

Contents of i_ar3 after receiving value from f(i_ar): 0 1 2 3 4

Of course, dyn safe array works with class types, too.
Original contents of mc_ar: -1 -1 -1
Values in mc_ar after setting them: 9 8 7

Now, create mc_ar2 and then execute this statement:
mc_ar2 = f(mc_ar);

Using dyn safe array's copy constructor to make a copy.
f() is returning a copy of x.

Using dyn safe array's copy constructor to make a copy.
Assigning one dyn safe array object to another.
Contents of mc_ar2 after receiving f(mc_ar): 9 8 7

Options and Alternatives

As explained in the discussion, the most common form of copy constructor has only one
parameter that is a reference to an object of the class for which the copy constructor is
defined. However, it is permissible for a copy constructor to have additional parameters as
long as they have default arguments. For example, assuming the dyn_safe_array class, the
following declaration specifies a valid copy constructor:

dyn _safe array(const dyn safe array &obj, int num = -1);

Here, the num parameter defaults to —1. You could use this constructor to allow only the
first num elements of the new dyn_safe_array to be initialized by the first num elements of
obj. The remaining elements can be given a default value. When num is -1, the entire array
is initialized by obj. This version of the copy constructor could be written like this:

// If num is not -1, initialize the first num elements of a safe array
// using the value from obj. The remaining elements get default values.
// Otherwise, initialize the entire array with the elements from obj.
template <class T, int len>
dyn_safe array<T, len>::dyn safe array(const dyn safe_ array &obj,
int num) {

cout << "Using dyn safe array's copy constructor to make a copy.\n";

try {
// Allocate an array of the same size as the
// one used by obj.
aptr = new T[obj.length];
} catch(bad alloc ba) {
// Take appropriate action here. This is just
// a placeholder response.
cout << "Can't allocate array.\n";
exit (1) ;
}

length = obj.length;

// Copy contents of obj, up to the number passed via num.

478 Herb Schildt's C++ Programming Cookbook

// If num is -1, then all values are copied.
if (num == -1) num = obj.length;

for(int 1=0; i < num; ++i)
aptr[i] = obj.aptrl[il;

// Initialize any remaining elements with their default value.
for(int i=num; i < length; ++1)
aptr[i] = T();
}

You could use this constructor as shown here:
dyn safe array<int, 5> i_ar2(i_ar, 3);

Here, the first three elements of i_ar are used to initialize the first three elements of i_ar2.
The remaining elements are given a default value, which for integers, is zero.

As explained in the discussion (and demonstrated by the dyn_safe_array class in the
Bonus Example), if you need to implement a copy constructor, you often also need to
overload the assignment operator. The reason is that the same issues that necessitate the
copy constructor will also be present during assignment. It is important to not overlook
assignment.

”~

Determine an Object's Type at Runtime

I Key Ingredients
Headers Classes Functions
<typeinfo> type_info bool operator==(const type_info &ob) const
bool operator!=(const type_info &ob) const
bool before(const type_info &ob) const
const char *name() const

In polymorphic languages such as C++, there can be situations in which the type of an object
is unknown at compile time because the precise nature of that object is not determined until
the program is executed. Recall that C++ implements polymorphism through the use of class
hierarchies, virtual functions, and base class pointers. Since a base class pointer can be used
to point to an object of the base class or any object derived from that base, it is not always
possible to know in advance what type of object will be pointed to by a base pointer. This
determination must be made at runtime, using runtime type information (RTTI). The key
feature that enables this is the typeid operator. For some readers, RTTI and typeid are well-
understood features, but for others, they are the source of many questions. For this reason,
the basic RTTI techniques are described by this recipe.

Chapter 7: Potpourri 479

Step-by-Step
To identify an object's type at runtime involves the following steps:
1. To obtain the type of an object, use typeid(object). It returns a type_info instance
that describes object's type.

2. To obtain a type_info instance for a specific type, use typeid(type). It returns a
type_info object that represents type.

Discussion

To obtain an object's type, use the typeid operator. It has two forms. The first is used to
determine an object's type. It is shown here:

typeid(object)

Here, object is an expression that describes the object whose type you will be obtaining. This
can be the object itself, a dereferenced pointer, or a reference to the object. typeid returns a
reference to a const object of type type_info that describes the type of object. The type_info
class is declared in the <typeinfo> header. Therefore, you must include it when you use typeid.

The type_info class defines the following public members:

const char *name() const

bool operator==(const type_info &ob) const

bool operator!=(const type_info &ob) const

bool before(const type_info &ob) const
The name() function returns a pointer to the name of the type, represented as a null-

terminated string. For example, assuming some object called obj, the following statement
displays the type name of the object:

cout << typeid(obj) .name() ;

The overloaded == and != provide for the comparison of types. The before() function
returns true if the invoking object is before the object used as a parameter in collation order.
(This function has nothing to do with inheritance or class hierarchies.)

The second form of typeid takes a type name as its argument. It is shown here:

typeid(type-name)

Here type-name specifies a valid type name, such as int, string, vector, and so on. For
example, the following expression is perfectly acceptable:

typeid(int) .name ()

Here, typeid returns the type_info object that describes int. The main use of this form of
typeid is to compare an unknown type to a known type. For example,

if (typeid(int) == typeid(*ptr))

If ptr points to an int, then the if statement will succeed.

480

Herb Schildt's C++ Programming Cookbook

The most important use of typeid occurs when it is applied through a pointer of a
polymorphic base class. In this case, it will automatically return the type of the object being
pointed to. Recall that a base class pointer can point to objects of the base class or to an object of
any class derived from that base. In all cases, typeid returns the most derived type. Therefore,
if the pointer points to a base class object, then the base class' type is returned. If the pointer
points to a derived class object, then the derived class' type is returned. Thus, typeid lets you
determine at runtime the type of the object that is being pointed to by a base class pointer.

References to an object of a polymorphic class hierarchy work the same as pointers. When
typeid is applied to a reference to an object of a polymorphic class, it will return the type of
the object actually being referred to, which may be of a derived type. The circumstance
where you will most often make use of this feature is when objects are passed to functions
by reference.

If you apply typeid to a pointer or reference to an object of a non-polymorphic class
hierarchy, then the base type of the pointer is obtained. That is, no determination of what
that pointer is actually pointing to is made.

Example

The following program demonstrates the typeid operator. It creates an abstract class called
two_d_shape that defines the dimension of a two-dimensional object, such as a circle or a
triangle. It also specifies a pure virtual function called area(), which must be implemented
by a derived class so that it returns the area of a shape. The program creates three subclasses
of two_d_shape: rectangle, triangle, and circle.

The program also defines the functions factory() and sameshape(). The factory()
function creates an instance of a subclass of two_d_shape, which will be a circle, triangle,
or rectangle, and returns a two_d_shape pointer to it. The specific type of object created is
determined by the outcome of a call to rand(), C++'s random-number generator. Thus,
there is no way to know in advance what type of object will be generated. The program
creates six objects. Since any type of figure may be generated by a call to factory(), the
program relies upon typeid to determine which type of object has actually been made.

The sameshape() function compares two two_d_shape objects. The objects are the same
only if they are of the same type and have the same dimensions. It uses typeid to confirm
that the objects are the same type.

// Demonstrate runtime type id.

#include <iostream>
#include <cstdlib>

using namespace std;

// A polymorphic class that encapsulates two-dimensional shapes,
// such as triangles, rectangles, and circles. It declares a
// virtual function called area(), which derived classes overload
// to compute and return the area of a shape.
class two_d_shape {
protected:
double x, vy;
public:
two_d_shape (double i, double j) {

X = 1i;

Chapter 7: Potpourri

double getx() { return x; }
double gety() { return y; }

virtual double area() = 0;

i

// Create a subclass of two d shape for triangles.
class triangle : public two_d shape {
public:
triangle (double i, double j) : two d shape(i, j) { }

double area() {
return x * 0.5 * y;
}

Vi

// Create a subclass of two_d shape for rectangles.
class rectangle : public two_d_shape

public:
rectangle (double i, double j) : two_d shape(i, j) { }
double area()

return x * y;

}
i

// Create a subclass of two_d shape for circles.
class circle : public two_d shape ({
public:
circle (double i, double j=0) : two d shape(i, j) { }

double area() {
return 3.14 * x * x;

b

// A factory for objects derived from two_d shape.
two_d_shape *factory() {

static double i = (rand() % 100) / 3.0, j = (rand() % 100)
i += rand() % 10;
+= rand() % 12;

cout << "Generating object.\n";
switch(rand() % 3) {
case 0: return new circle(i);
case 1l: return new triangle (i, 3J);
case 2: return new rectangle(i, j);

/ 3.0;

481

482

Herb Schildt's C++ Programming Cookbook

}

return O;

// Compare two shapes for equality. This means that their
// types and dimensions must be the same.
bool sameshape (two_d_shape *alpha, two_d shape *beta)

}

cout << "Comparing a " << typeid(*alpha) .name ()
<< " object to a " << typeid(*beta) .name ()
<< " object\n";
if (typeid(*alpha) != typeid(*beta)) return false;
if (alpha->getx () != beta->getx() &&
alpha->gety() != beta->gety()) return false;

return true;

int main()

{

// Create a base class pointer to two_d shape.
two_d shape *p;

// Generate two_d shape objects.
for(int 1=0; 1 < 6; i++) {

}

// Generate an object.
p = factory();

// Display the name of the object.
cout << "Object is " << typeid(*p) .name() << endl;

// Display its area.
cout << " Area 1is " << p->area() << endl;

// Keep a count of the object types that have been generated.
if (typeid (*p) == typeid(triangle))
cout << " Base is " << p->getx() << " Height is "
<< p->gety() << endl;

else if (typeid(*p) == typeid(rectangle))
cout << " Length is " << p->getx() << " Height is "

<< p->gety() << endl;

else if (typeid(*p) == typeid(circle))
cout << " Diameter is " << p->getx() << endl;

cout << endl;

cout << endl;

// Make some objects to compare.
triangle t(2, 3);

Chapter 7:

triangle t2(2, 3);
triangle t3(3, 2);
rectangle r(2, 3);

// Compare two two d objects.
if (sameshape (&t, &t2))
cout << "t and t2 are the same.\n";

if (!sameshape (&t, &t3))
cout << "t and t3 differ.\n";

if (!sameshape (&t, &r))
cout << "t and r differ.\n";

cout << endl;

return 0;

}
The output is shown here:

Generating object.
Object is class rectangle
Area is 465.222
Length is 17.6667 Height is 26.3333

Generating object.
Object is class circle
Area is 1474.06

Diameter is 21.6667

Generating object.
Object is class rectangle
Area 1is 954.556
Length is 23.6667 Height is 40.3333

Generating object.
Object is class circle
Area is 2580.38

Diameter is 28.6667

Generating object.
Object is class triangle
Area is 776.278
Base 1s 29.6667 Height is 52.3333

Generating object.
Object is class circle
Area is 3148.72

Diameter is 31.6667

Comparing a class triangle object to a class triangle object
t and t2 are the same.

Potpourri

483

484 Herb Schildt's C++ Programming Cookbook

Comparing a class triangle object to a class triangle object
t and t3 differ.

Comparing a class triangle object to a class rectangle object
t and r differ.

Options and Alternatives

The typeid operator can be applied to template classes. The type of an object that is an
instance of a template class is determined, in part, by what data is used for its type parameters
when the object is instantiated. Two instances of the same template class that are created using
different data are, therefore, different types. For example, assume the template class myclass,
shown here:

template <class T> class myclass {
//
i

The following sequence:

myclass<int> mc_int;
myclass<double> mc_dbl;

cout << "mc_int type is " << typeid(mc_int) .name() << endl
<< "mc_dbl type is " << typeid(mc_dbl) .name() << endl;

if (typeid(mc_int) != typeid(mc_dbl))
cout << "The two objects are not of same type";

produces the following output:

mc_int type is class myclass<ints>
mc_dbl type is class myclass<double>
The two objects are not of same type

As you can see, even though mc_int and mc_dbl are objects of myclass, their types differ
because different template arguments are used.

ra

‘. Use Complex Numbers

I Key Ingredients
Headers Classes Functions
<complex> complex T imag() const

T real() const

Chapter 7: Potpourri 485

A sometimes overlooked feature of C++ is its support for complex numbers. A complex
number contains two components: a real part and an imaginary part. The imaginary part
specifies a multiple of i, which is the square root of —1. Thus, a complex number is usually
represented in this form:

a+bi

where a specifies the real part and b specifies the imaginary part. In C++, complex numbers
are supported by the class complex. This recipe shows the basic techniques required to
use it.

Step-by-Step
To use complex numbers involves these steps:

1. Create one or more complex objects. The complex class is generic, and you must
specify the type of the components. This will normally be a floating-point type,
such as double.

2. Perform operations on complex objects by use of overloaded operators. All of the
arithmetic operators are defined for complex.

3. Obtain the real component of a complex instance by calling real().

4. Obtain the imaginary component of a complex instance by calling imag().

Discussion
The template specification for complex is shown here:

template <class T> class complex

Here, T specifies the type used to represent the components of a complex number. There are
three predefined specializations of complex:

class complex<float>
class complex<double>
class complex<long double>

Specifying any other type argument is undefined.
The complex class has the following constructors:

complex(const T &real = T(), const T &imaginary = T())
complex(const complex &ob)
template <class T1> complex(const complex<T1> &ob);

The first constructs a complex object with a real component of real and an imaginary
component of imaginary. These values default to zero if not specified. The second creates
a copy of ob. The third creates a complex object from ob.

486 Herb Schildt's C++ Programming Cookbook

The following operations are defined for complex objects:

The non-assignment operators are overloaded in three ways: once for operations involving
a complex object on the left and a scalar object on the right, again for operations involving a
scalar on the left and a complex object on the right, and finally for operations involving two
complex objects. For example, the following types of addition operations are allowed:

complex_ob + scalar

scalar + complex_ob

complex_ob + complex_ob

Two member functions are defined for complex: real() and imag(). They are shown here:
T real() const

T imag() const

The real() function returns the real component of the invoking object, and imag() returns
the imaginary component.

The <complex> header also defines complex versions of the standard math functions,
such as abs(), sin(), cos(), and pow().

Example
Here is a sample program that demonstrates complex:

// Demonstrate the complex class.

#include <iostream>
#include <complex>

using namespace std;
int main/()

{

complex<double> cmpxl (1, 0);
complex<double> cmpx2 (1, 1);

cout << "cmpxl: " << cmpxl << endl << "cmpx2: " << cmpx2 << endl;

// Add two complex numbers.
cout << "cmpxl + cmpx2: " << cmpxl + cmpx2 << endl;

Chapter 7: Potpourri 487

// Multiply two complex numbers.
cout << "cmpxl * cmpx2: " << cmpxl * cmpx2 << endl;

// Add a scalar to a complex number.
cmpxl += 2.0;
cout << "cmpxl += 2.0: " << cmpxl << endl;

// Find the sin of cmpx2.
cout << "sin(cmpx2): " << sin(cmpx2) << endl;

return 0;

}
The output is shown here:

cmpxl: (1,0)

cmpx2: (1,1)

cmpxl + cmpx2: (2,1)

cmpxl * cmpx2: (1,1)

cmpxl += 2.0: (3,0)
sin(cmpx2): (1.29846,0.634964)

Options and Alternatives

For programmers who focus on numeric computations, C++ provides more support than
one might at first guess. In addition to complex, C++ includes the valarray class that
supports operations on numeric arrays. It also supplies two utility classes called slice and
gslice, which encapsulate a portion (i.e., a slice) of an array. These classes require the

header <valarray>. In the <numeric> header are defined four numeric algorithms called
accumulate(), adjacent_difference(), inner_product(), and partial_sum(). All of these will
be of interest to the numeric programmer.

-~

Use auto_ptr

I Key Ingredients
Headers Classes Functions
<memory> auto_ptr T *get() const throw()
T *release() throw()
void reset(X *ptr = 0) throw()

C++ includes a class called auto_ptr that was designed to simplify the management of
dynamically allocated memory. As many readers will know, one of the most troubling

488

Herb Schildt's C++ Programming Cookbook

aspects of using dynamic allocation is the prevention of memory leaks. One way a memory
leak can occur is when memory is allocated, but never freed. The auto_ptr class is an
attempt to prevent this situation. This recipe describes its use.

Step-by-Step

To use auto_ptr involves these steps:

1. Create an auto_ptr, specifying the base type of the pointer.

2. Allocate memory using new, and assign a pointer to that memory to the auto_ptr
created in Step 1.

3. Use the auto_ptr just like a normal pointer. However, do not free the memory
pointed to by the auto_ptr. In other words, do not use delete to release the memory.

4. When the auto_ptr is destroyed, such as when it goes out of scope, the memory
pointed to by the auto_ptr is automatically freed.

5. You can obtain the pointer held by an auto_ptr by calling get().
6. You can set the auto_ptr's pointer by calling reset().

7. You can release the auto_ptr's ownership of the pointer by calling release().

Discussion
An auto_ptr is a pointer that owns the object it points to. Ownership of this object can be
transferred to another auto_ptr, but some auto_ptr always owns the object. For example,
when one auto_ptr object is assigned to another, only the target of the assignment will own
the object. When an auto_ptr is destroyed, such as when it goes out of scope, the object
pointed to by the auto_ptr is automatically freed. Because only one auto_ptr will own (hold
a pointer to) any given object at any given time, the object will only be freed once, when the
auto_ptr having ownership is destroyed. Any other auto_ptrs that may have previously
held ownership take no action. This mechanism ensures that dynamically allocated objects
are properly freed in all circumstances. Among others, one benefit of this approach is that
dynamically allocated objects can be automatically freed when an exception occurs.

The template specification for auto_ptr is shown here:

template <class T> class auto_ptr

Here, T specifies the type of pointer stored by the auto_ptr.
Here are the constructors for auto_ptr:

explicit auto_ptr(T *ptr = 0) throw()
auto_ptr(auto_ptr &ob) throw()
template <class T2> auto_ptr(auto_ptr<T2> &ob) throw()

The first constructor creates an auto_ptr to the object specified by ptr. The second constructor
creates a copy of the auto_ptr specified by ob and transfers ownership to the new object. The
third converts &ob to type T * (if possible) and transfers ownership.

Chapter 7: Potpourri 489

The auto_ptr class defines the =, *, and —> operators. It also defines these three functions:
T *get() const throw()

T *release() throw()

void reset(X *ptr = 0) throw()

The get() function returns a pointer to the stored object. The release() function removes
ownership of the stored object from the invoking auto_ptr and returns a pointer to the
object. After a call to release(), the pointed-to object is not automatically destroyed when
the auto_ptr object goes out of scope. The reset() function calls delete on the pointer
currently held by the auto_ptr (unless it equals ptr) and then sets the pointer to ptr.

Example

Here is a short program that demonstrates the use of auto_ptr. It creates a class called X that
stores an integer value. Inside main(), an X object is created and assigned to an auto_ptr.
Notice how the members of X can be accessed through the auto_ptr, using the normal pointer
operator —>. Also notice how one and only one auto_ptr owns the pointer to the X object at
any given time. This is why only one X object is destroyed when the program finishes.

// Demonstrate an auto_ ptr.

#include <iostream>
#include <memory>

using namespace std;

class X {
public:
int v;

X(int 3) {
v = 3J;
cout << "Constructing X (" << v <<")\n";

}

~X() { cout << "Destructing X(" << v <<")\n"; }
void £() { cout << "Inside f£()\n"; }

Vi

int main()

{

auto_ptr<X> pl(new X(3)), p2;

cout << "pl points to an X with the value " << pl->v
<< "\n\n";

// Transfer ownership to p2.
cout << "Assigning pl to p2.\n";

490 Herb Schildt's C++ Programming Cookbook

p2 = pl;

cout << "Now, p2 points to an X with the value " << p2->v
<< endl;

if (Ipl.get()) cout << "pl's pointer is now null.\n\n";

// Can call a function through an auto_ptr.
cout << "Call f() through p2: ";

p2->£();

cout << endl;

// Assign the pointer encapsulated by an auto ptr to

// a normal pointer.

cout << "Get the pointer stored in p2 and assign it to a\n"
<< "normal pointer called ptr.\n";

X *ptr = p2.get();

cout << "ptr points to an X with the value " << ptr->v
<< "\n\n";
return 0;

// At this point, the allocated object is freed and
// its destructor is called. Even though there are

// two auto_ptr objects, only one owns the pointer.
// Therefore, only one X object is destroyed.

}
The output produced by this program is shown here:

Constructing X (3)
pl points to an X with the value 3

Assigning pl to p2.
Now, p2 points to an X with the wvalue 3
pl's pointer is now null.

Call £() through p2: Inside £f()

Get the pointer stored in p2 and assign it to a
normal pointer called ptr.
ptr points to an X with the value 3

Destructing X(3)

Options and Alternatives

Although auto_ptr is useful, it does not prevent all pointer problems. For example, it is still
possible to operate accidentally on a null pointer. You can use auto_ptr as the basis for your
own custom "safe pointer" type, however. To experiment with this concept, try using an
auto_ptr for the ptr member in the safe_ptr class shown in the Bonus Example in Overload
the —> Operator.

Another thing that auto_ptr does not provide is garbage collection. As most readers know,
garbage collection is a memory management scheme in which memory is automatically

Chapter 7: Potpourri 491

recycled when it is no longer used by any object. Although aspects of auto_ptr seem related
to garbage collection, such as the fact that allocated memory is automatically released when
the auto_ptr goes out of scope, garbage collection relies on a fundamentally different
mechanism. Currently, Standard C++ does not define a garbage collection library, but the
next version of C++ might.

One last point: To pass an auto_ptr to a function, I recommend using a reference
parameter. I have seen significant differences over the years in the way different compilers
handle passing an auto_ptr value. Passing a reference avoids the issue.

”~

‘ Create an Explicit Constructor

I Key Ingredients
Headers Classes Functions
any class explicit constructor(type param)

To conclude this cookbook on C++, I have chosen one of its more esoteric features: the
explicit constructor. Over the years, I have been asked several times about this feature
because it is frequently used in the Standard C++ library. Although not difficult, it is a
specialized feature whose meaning is not universally understood. This recipe describes the
purpose of an explicit constructor and shows how to create one.

Step-by-Step

To create an explicit constructor involves these steps:

1. Create a constructor that takes one argument.

2. Modify that constructor with the keyword explicit.

Discussion

C++ defines the keyword explicit to handle a special-case condition that occurs with

a constructor that requires only one argument. To understand the purpose of explicit, consider
the following class:

class myclass {
int val;

public:
myclass (int x) { val = x; }
int getval() { return val; }

i

492

Herb Schildt's C++ Programming Cookbook

Notice that the constructor for myclass has one parameter. This means that you can
create a myclass object like this:

myclass ob(4) ;

In this declaration, the value 4, which is specified in the parentheses following ob, is an
argument that is passed to myclass()'s parameter x. This value is then used to initialize val.
This is a common form of initialization, and it is widely used in this book. However, there is
an alternative, as shown by the following statement, which also initializes val to 4:

myclass ob = 4; // automatically converts into myclass (4)

As the comment suggests, this form of initialization is automatically converted into a call
to the myclass constructor, with 4 being the argument. That is, the preceding statement is
handled by the compiler as if it were written like this:

myclass ob(4);

In general, any time that you have a constructor that requires only one argument, you
can use either ob(x) or ob = x to initialize an object. The reason for this is that whenever you
create a constructor that requires one argument, you are also implicitly creating a conversion
from the type of that argument to the type of the class.

If you do not want implicit conversions to occur, you can prevent them by using explicit.
The explicit specifier applies only to constructors. A constructor specified as explicit will be
used only when an initialization uses the normal constructor syntax. It will not perform
any automatic conversion. For example, by declaring the myclass constructor explicit, as
shown here:

explicit myclass(int x) { val = x; }

the automatic conversion will not be supplied. Now, only constructors of the form
myclass ob(27);

will be allowed. This form

myclass ob = 27; // Now an error!

will not be allowed.

Example

The following example puts together the pieces and illustrates an explicit constructor. First,
here is a program that illustrates the automatic conversion that occurs when a constructor is
not modified by explicit:

#include <iostreams
using namespace std;
class myclass {

int val;
public:

Chapter 7: Potpourri 493

// The following constructor is NOT explicit.
myclass (int x) { val = x; }

int getval() { return val; }

i

int main()

{
myclass ob(4); // OK
cout << "val in ob: " << ob.getval() << endl;

// The following statement is OK because of the implicit
// conversion from int to myclass.

myclass ob2 = 19;

cout << "val in ob2: " << ob2.getval() << endl;

return 0;

}

The output is shown here:

val in ob: 4
val in ob2: 19

As you can see, both forms of initialization are allowed, and both initialize a myclass
instance as expected.

The following version of the program adds the explicit modifier to the myclass
constructor:

#include <iostream>
using namespace std;

class myclass {
int val;

public:
// Now myclass(int) is explicit.
explicit myclass(int x) { val = x; }

int getval() { return val; }

Vi

int main ()
{
myclass ob(4); // Still OK
cout << "val in ob: " << ob.getval() << endl;

// The following statement is in error because the implicit
// conversion from int to myclass is no longer allowed.
myclass ob2 = 19; // Error!

cout << "val in ob2: " << ob.getval() << endl;

return O;

494

Herb Schildt's C++ Programming Cookbook

After making myclass(int) explicit, the statement
myclass ob2 = 19; // Error!

is now in error and won't compile.

Options and Alternatives

The explicit modifier applies only to constructors that require one argument. However, this
does not mean that the constructor must have only one parameter. It simply means that any
parameters after the first must have default arguments. For example:

class myclass {
int val;
int another val;
public:
explicit myclass(int x, int y = 0) { val = x; another val = y; }
//
Vi

Because y defaults to 0, the use of explicit is still valid. Its use prevents the following
declaration:

myclass counter = 19; // not valid

If the constructor had not been declared as explicit, the preceding statement would have
been allowed, with y defaulting to 0. Because of explicit, the constructor must be explicitly
invoked, like this:

myclass counter(19);
Of course, you can also specify a second argument:

myclass counter (19, 99);

Symbols

-
overloading, 445451
used with iterators, 154

and iterators, 71, 109
and stream iterators, 267, 268, 269
and streams, 284

how to overload, 441-445

used with deque, 119, 120

used with map, 158-159

used with string objects, 15, 52, 54
used with vector, 111, 112, 114, 117

and containers, 98
overloading, 468, 478
used with string objects, 15, 52, 53

and containers, 98, 109, 141, 154-155, 172
overloaded by type_info, 479
used with string objects, 15, 52, 54
!'and streams, 284, 289, 292, 294, 297, 300,
302, 304-305, 306, 309, 315
I—
and containers, 98
overloaded by type_info, 479
used with string objects, 15
—, overloading for use with string objects,
86-91
—=, overloading for use with string objects,
86-91
——, how to overload, 457-462
(), how to overload, 437—440
+ used with string objects, 15, 52, 53, 86

Index

+= used with string objects, 15

++
how to overload, 457-462
used with istream_iterator, 267
used with istreambuf_iterator, 268
<
and containers, 98, 109, 141, 154-155, 172
used with string objects, 15
<<

used to format numeric output,
397, 398

used with string objects, 15

<< insertion operator for streams, 284,
293,294

creating a custom, 341-344

and manipulators, 346, 348

for parameterized manipulators,
overloading the, 348, 349-350

and containers, 98
used with string objects, 15, 54

and containers, 98, 154-155
used with string objects, 15, 52, 54
>> used with string objects, 15
>> extraction operator for streams, 284, 298,
299-300
creating a custom, 341-344
and formatting numeric output, 397
and manipulators, 346, 348
for parameterized manipulators,
overloading the, 349

and containers, 98
used with string objects, 15

495

Copyright © 2008 by The McGraw-Hill Companies. Click here for terms of use.

496

Herb Schildt's C++ Programming Cookbook

A
accumulate() algorithm, 487
Adaptors, 96
container, 97-98, 132-140
insert iterator, using, 274-277
pointer-to-function, using, 262-265
adjacent_difference() algorithm, 487
adacent_find() algorithm, 184, 187, 199
adjustfield, 369, 388, 389
Algorithm, creating a custom, 238244
with a predicate, 239, 242-244
<algorithm> header, 66, 71, 73,77, 182
Algorithm(s), STL, 94
advantages of, 66, 182
and iterators, 182-183, 200, 225
modifying sequence, table of, 185
non-modifying sequence, table of, 184
organized by functional groupings,
table of, 187
overview, 182-184, 185-187
sorting and related, table of, 186
to streams, applying, 265-266,
272-273
and string objects, 66, 70,71, 73,76
template function nature of, 182-183
Algorithms, numeric, 487
allocator class, 95
Allocator generic type name, 12, 96
allocator_type, 97
Allocators, STL, 95
app, 290
append(), 13, 58
iterator version of, 76
argument_type, 250
Array(s)
boundary-checking, 12, 441
copy constructor to implement a safe,
using a, 471-478
overloading [] to create safe,
441, 442-445
overrun, 12, 16, 19-20, 37, 51, 57-58
and vector, dynamic, 111
See also Buffer overrun
assign(), 13, 58, 118, 124
iterator version of, 76, 112, 113, 119
Assignment operator, overloading the,
468, 478

Associative containers, 94, 97
requirements for, 100-101
techniques, basic, 145-156

at(), 14, 58,99, 111, 112-113, 119

ate, 290

auto_ptr class, 451
using the, 487491
to create a safe pointer, 490

B
back(), 99, 112, 113, 119, 120, 126,
133,134
back_insert_iterator class, 275
back_inserter() insert iterator adaptor,
274-275
bad(), 283, 288, 296, 300, 304, 318, 322
bad_alloc exception, 38, 452
bad_cast exception, 399, 402, 408
badbit error flag, 288, 318, 336
basefield, 369, 379, 380
basic_filebuf class, 281, 282, 286
basic_fstream class, 281, 282, 285, 286
basic_ifstream class, 281, 282, 285, 286
basic_ios class, 281, 282, 283-284, 286,
332, 369
basic_iostream class, 281, 282, 285, 286
basic_istream class, 281, 282, 283, 285, 286
basic_istringstream class, 281, 282, 286, 337
basic_ofstream class, 281, 282, 284, 285, 286
basic_ostream class, 281, 282, 284, 285, 286,
400, 409
basic_ostringstream class, 281, 282, 286, 337
basic_streambuf class, 281, 282, 286
basic_string class, 7, 12
strings, advantages of using, 51-52,
57,70
basic_stringbuf class, 281, 282, 286
basic_stringstream class, 281, 282, 286, 337
before(), 479
beg, 327
begin(), 14, 71, 72, 98, 103, 104, 113, 120, 126,
146, 149, 159, 190
Bilter, 95, 183
binary, 290-291, 301, 306
Binary predicate, 77-78, 96
binary_function structure, 249, 250
binary_negate class, 260

binary_search(), algorithm, 186, 187,
197-198
bind1st() binder, 188, 256, 258-259
bind2nd() binder, 188, 256, 257, 258, 260,
263-264
binderlst class, 256
binder2nd class, 256
Binders, 96, 188
how to use, 255-259
how to use functions with, 262
BinPred generic type name, 96, 183
bitset class, 179
<bitset> header, 179
boolalpha
format flag, 368, 369
manipulator, 370, 392
Buffer overrun, 12,17, 18, 311

C

C++
International Standard for, 4
standard library, 5
c_str(), 14, 83, 85
Calculator, using stack to create a post-fix,
137-140
capacity(), 14, 52, 54, 112, 114
catch statement, 323
<cctype> header, 28, 39, 40
cerr, 287
char, 7, 302, 304, 307, 368
streams based on, 285-286
char* string, 8
char_traits class, 282
char_type, 283, 403, 404
cin, 287, 298
and istream_iterator, 267, 269
Class member function operator —>, how to
overload the, 445-451
clear(), 13,59, 99, 100, 103, 104, 126, 146, 148
defined by basic_ios, 283, 289, 318
<clocale> header, 417
clog, 287
Close operation, 280
close(), 285, 292-293, 294, 298, 302, 306, 307
Comp generic type name, 96, 183
compare(), 14, 59

Index

491

Comparison function, definition of, 188
complex class, 485
<complex> header, 486
Complex numbers, using, 484487
const_iterator, 72,97, 113
const_reference, 97, 112
const_reverse_iterator, 72, 97, 113
Constant time performance category, 101
amortized, 101
Constructor
copy. See Copy constructor
explicit, creating an, 491494
Container sequence(s)
change a, using transform() to,
211-215
cycle through a, 208-210
definition of a, 94
find a matching, 199203
from one container to another, copy a,
225-227
generate a, 215-216
merging two sorted, 231-234
permute a, 222-225
replacing and removing elements in a,
227-230
reverse, rotate, and shuffle a, 203-207
set operations on a, performing,
217-222
Container(s), 94
adaptors, 97-98, 132-140
associative. See Associative containers
choosing a, 103, 110
declaring an iterator for a, 104
defined by the STL, table of, 97
find an element in a, 192-199
inserting elements into a, 274-277
performance guarantees, 101
requirements for all, 98
reversible, 98, 105
sequence. See Sequence containers
sorting, 189-192
string class as a, 15, 58, 66, 70, 76
template classes used to implement, 96
user-defined objects in a, storing,
140-144
Conversion function, creating a,

463-466

498

Herb Schildt's C++ Programming Cookbook

Copy constructor
creaing a, 466—478
to implement a safe array, using a,
471-478
copy()
algorithm, 185, 187, 225-227
function, 13
copy_backward() algorithm, 185, 187, 227
count(), 100, 155
cout, 287, 294
and ostream_iterator, 267, 269
and printf(), 419
<cstdio> header, 356, 357, 362, 363, 371
<cstring> header, 9, 11, 17
<ctime> header, 409, 415
cur, 327
cur_symbol(), 402, 404
Current location, 281
Current position, 281

D
data(), 14, 85
dec
format flag, 368, 369, 379, 380, 393
manipulator, 370, 392
decimal_point(), 402, 403, 404
Decrement operator, how to overload the,
457-462
delete operator, 488
overloading the, 451-456
deque container, 94, 96, 97, 103, 118, 133, 134
constructors, 119
iterators, 120
performance characteristics, 120
performance guarantee, 110
recipe for using a, 118-124
template specification, 119
<deque> header, 97
divides function object, 95, 184, 246

E
empty(), 14, 98, 103, 104, 133, 134, 135,
146, 149
end, 327
end(), 14,71, 72,98, 103, 104-105, 113, 120,
126, 146, 149, 155, 159, 190

endl manipulator, 370, 392, 393
ends manipulator, 370, 392, 393
EOF
detecting, 317-322
C I/0 system macro, 357, 358,
359, 362
eof(), 283, 288, 300, 309, 326
recipes using, 317-322
eofbit error flag, 288, 318, 333, 336
equal()
algorithm, 184, 187, 203
function, 269
equal_range()
algorithm, 186, 187, 198
function, 100, 141, 155, 168-169, 178
equal_to function object, 184, 246, 260
erase(), 13, 52, 54, 58, 86, 87, 100, 146, 148,
162, 163, 165, 167-168, 170, 171
iterator versions of, 71, 73, 99, 100, 103,
104, 110, 120, 126, 127, 156, 168, 178
Error handling
error-reporting functions for, using
the, 288-289, 322, 326, 336
exceptions for, using, 289, 296, 300,
304, 309, 322-326, 336
in the recipe examples, 3, 289
exception class, 323
Exceptions, 289, 296, 300, 304, 309,
322-326, 336
exceptions(), 283, 296, 300, 304, 323
explicit keyword, using the, 491-494
Extractors, 341
creating custom, 341-344

F
Facets, 355, 371, 372-373, 418
fail(), 283, 284, 288, 289, 292, 294, 296, 297,
300, 302, 304, 306, 309, 315, 322, 326
failbit error flag, 288, 292, 307, 318, 323
failed(), 266, 269
failure, 323
falsename(), 405-406
fclose(), 356, 358
feof(), 356, 359
ferror(), 356, 359
fflush(), 362

fgetc(), 356, 359
Field width, setting the, 385-388, 393
to line up columns of numbers,
387-388
using printf(), 421422
File, binary, 290-291
and random access I/0, 328
File pointer
in C, 356, 357, 358
in C++, 326
File, text
and random-access 1/0, 328
reading formatted data from a,
296-300
writing formatted data to a, 293-296
FILE type, 357
File(s)
character translations in, 290-291
comparing, recipe for, 320-322
definition of a, 280, 281
explicitly closing, advantages of, 289,
293, 326
filter, creating an STL-based, 272-273
get() and getline() to read from a,
using, 310-314
look ahead in a, 332-337
and random access I/0, 326-332
reading from and writing to a, 314-317
reading unformatted binary data from
a, 305-309
renaming and removing, 362-365
streams, 290-291
text vs. binary, 290-291
writing unformatted binary data to a,
300-305
filebuf class, 286
Fill character, setting the, 385, 386-388, 393
fill(), 283, 382, 385, 386, 388, 393, 412
find(), algorithm, 66, 71, 73, 141, 184, 187,
193-195
performance guarantee, 101
find() function, 13, 60, 65-66, 67, 86, 87
and the < operator, 141
iterator versions of, 100, 146, 148-149,
155,159, 163, 164, 170, 171
find_end() algorithm, 184, 187, 202-203
find_first_not_of(), 13, 60, 63

Index

499

find_first_of()
algorithm, 66, 184, 187, 198
function, 13, 60, 61, 63
find_if() algorithm, 184, 187, 193-195, 257
find_last_not_of(), 13, 60, 61
find_last_of(), 13, 60, 61
first_argument_type, 250
fixed
format flag, 368, 369, 379, 380, 383
manipulator, 370, 392
Flags, error, 288-289
Flags, format, 287, 368-369
manipulators to set the, using, 382
and numeric values formatting,
379-383
settings, how to display, 376-378
using stream member functions to
access, 374-378
flags(), 283, 370, 374, 375, 378
flip(), 118
floatfield, 369, 379, 380
Floating-point values
using precision() to set the precision
of, 383-385
using printf() to format, 420421
using setprecision to set the precision
of, 385, 393
flush manipulator, 370, 392, 393
flush(), 284, 315, 316
fmtflags bitmask enumeration, 283, 287, 368
fopen(), 356, 357-358
for_each() algorithm, 184, 187, 208-210,
215,244
Forlter, 95, 183
Formatting, 367424
data into a string, 412414
and facets, 372-373
and format flags. See Flags, format
and I/O manipulators. See
Manipulator(s)
monetary values. See Monetary values
numeric values. See Numeric values
and output justification. See
Justification of output
overview, 368-371
and printf(). See printf()
time and date. See Time and date

500

Herb Schildt's C++ Programming Cookbook

fpos_t type, 357
fprintf(), 362, 371, 419, 424
fputc(), 356, 358
frac_digits(), 403, 404
fread(), 361
free(), 453
front(), 99, 111, 113, 119, 120, 126,
133,134, 135
front_insert_inserter class, 275
front_inserter() insert iterator adaptor,
274-275
fscanf(), 362
fseek(), 361-362
fstream class, 286, 290, 291, 314, 315,
317,327
constructors, 315
<fstream> header, 282, 285, 294, 297, 298,
301, 306, 315
Func generic type name, 183
Function
call operator, how to overload the,
437-440
conversion, create a, 463-466
comparison, definition of, 188
operator. See operator function(s)
Function adaptors, 262
for member functions, 265
Function object(s), 95-96
adapting a function pointer into a,
262-265
advantages of, 249
binder to bind a value to a, using a,
255-259
built-in, using the, 245-248
custom, creating a, 248-255
to maintain state information, using,
253-255
overview, 184, 188
Function pointer(s), 95-96, 184, 190,
245,248
into a function object, adapting a,
262-265
manipulators and, 346, 348
vs. function object, 249, 255
<functional> header, 188, 246, 250,
256, 262
fwrite(), 361

G
Garbage collection, 490-491
gcount(), 284, 309, 337
generate() algorithm, 185, 187, 215-216
generate_n() algorithm, 185, 187, 215
Generator generic type name, 183
Get pointer, 327
get(), 284, 309, 314, 315
defined by auto_ptr, 488, 489
to detect end-of-file, 322
and the money_get facet, 402
to read from a file, recipe using,
310-313, 318-320
getc(), 361
defined by num_get, 398
getline(), 284, 300, 309
to read from a file, recipe using,
310-314
getloc(), 283, 353, 399-400
good(), 283, 288, 289, 293, 294, 298, 302, 306,
307, 315, 318, 322, 326
goodbit error flag, 288
greater function object, 95, 184, 188, 190, 246,
255,257, 258-259
greater_equal function object, 184, 246
grouping(), 402, 403, 404
gslice class, 487

H
has_facet(), 373, 402
Heap, creating and managing a, 235-238
hex
format flag, 368, 369, 379, 380, 393
manipulator, 370, 392, 393

|
ifstream class, 286, 290, 291, 297, 298, 305,
306, 314, 315, 318, 327
constructors, 297, 306
ifstream::traits_type::eof(), 322
ignore(), 284, 333, 334-336
imag(), 485, 486
imbue(), 283, 353, 372, 373, 396, 399, 408
in, 290
includes() algorithm, 186, 187, 217, 218,
219,222

Increment operator, how to overload the,
457-462
Inlter, 72, 73,95, 183
inner_product() algorithm, 487
inplace_merge() algorithm, 186, 187,
231,232
comparison function version
of, 234
insert(), 13, 53, 58
iterator version of, 71, 73, 99, 100, 103,
104, 109-110, 111, 113, 117, 120, 125,
126, 146, 148, 156, 158, 159, 162, 163,
164,170,171,178
insert_iterator class, 275
inserter() insert iterator adaptor,
274-275
Inserters, 341
creating custom, 341-344
int_type, 283, 333
internal
format flag, 368, 369, 386, 388, 389
manipulator, 370, 387, 391
1/0, C file
and C++, 355-356, 362
renaming and removing a file using,
363-365
using, 355-362
1/0, C++
buffers, 316
and C file I/O, 355-356, 362
manipulators. See Manipulator(s)
overview, 280-287
and stream iterators, 265-273, 280
streams. See Stream(s), C++
using string streams, 282, 337-341
1/0, C++ file, 282
random-access, using, 326-332
<iomanip> header, 352, 370, 392, 393
ios class, 286, 290, 291, 327, 369
<ios> header, 282, 283, 370, 392, 393
ios::app, 296, 304
ios::ate, 296, 304
ios::badbit, 323
ios::binary, 301, 302, 306, 315
ios::eofbit, 318, 322, 323
ios::failbit, 288, 318, 323
ios::goodbit, 323

Index 501

ios::in, 306, 315
ios::out, 294, 296, 301, 302, 315
ios_base class, 281, 282-283, 287, 288, 290,
291, 323, 327, 369, 370, 372, 374, 375, 383
ios_base::badbit, 323
ios_base::eofbit, 323
ios_base::failbit, 323
i0os_base::failure, 296, 300, 304, 323
ios_base::goodbit, 323
iostate type, 283, 288, 323
iostream class, 286, 315
<jostream> header, 287, 370, 392, 393
is_open(), 285, 292
isalum(), 39, 40
isalpha(), 39, 40, 41
isentrl(), 39, 40
isdigit(), 39, 40
isgraph(), 39, 40
islower(), 39, 40, 248
isprint(), 39, 40
ispunct(), 39, 40, 41
isspace(), 39, 40
istream class, 286, 287, 298, 315, 318, 327,
341, 342, 345, 349
<istream> header, 284, 298
istream_iterator class, 266267
istream_type, 267, 268
istreambuf_iterator class, 266-267,
268-269
istringstream class, 286, 337, 338
constructor, 337, 340
isupper(), 39, 40
isxdigit(), 39, 40
iter_type, 398, 400, 409
iterator, 14,71, 72,97, 108, 113, 148
<iterator> header, 266, 272
Iterator(s), 94-95, 103
adaptors, using insert, 274-277
and algorithms, 182-183, 200, 225
benefits of using, 70, 73
and container adaptors, 132
declaring, 104, 108
and maps, 154
operations supported by, table of, 95
reverse, benefits of using, 117
similarity to pointers, 109, 154
and string objects, 15, 70-76

502

Herb Schildt's C++ Programming Cookbook

Iterator(s), stream, 265-273, 280
to create an STL-based file filter, using,
272-273
demonstration program, 269-271
formatted, 267-268
low-level, 268-269

J

Justification of output
using format flags, 388-391
using printf(), 422

K
key_comp(), 100

key_type(), 97

L
LC_ALL macro, 417
LC_COLLATE macro, 417
LC_CTYPE macro, 417
LC_MONETARY macro, 417
LC_NUMERIC macro, 417
LC_TIME macro, 417

left
format flag, 368, 369, 388, 389
manipulator, 370, 392

length(), 14, 58

length_error exception, 16, 58
less function object, 95, 184, 246, 259, 260
less_equal function object, 184, 246
Linear time performance category, 101
list container, 94, 97, 103, 133, 134, 140
constructors, 125
iterators, 125, 131
merging a, 126, 130, 232
performance characteristics, 127
performance guarantee, 101, 110
recipe for using a, 124-131
removing elements from a, 127,
130-131, 228
sorting a, 126, 130, 183
template specification, 125
<list> header, 97
locale class, 352, 353, 355, 371, 372, 396,
399, 408
<locale> header, 31, 43, 353, 355, 371, 372,
373,399, 402

locale::facet, 371, 372, 403
Localization library, 31, 372

formatting data using the, 367, 370-371
localtime(), 408, 409, 415
Logarithmic time performance category, 101
logical_and function object, 184, 246
logical_not function object, 188, 246
logical_or function object, 184, 246
lower_bound()

algorithm, 186, 187, 198

function, 100, 141, 155

M
main(), returning a value from, 4
make_heap() algorithm, 186, 187, 235
comparison function version, 238
make_pair(), 148
malloc(), 453
Manipulator(s), 287, 344-345, 370
to format data, using, 391-398
and <iomanip>, 352, 370
parameterized, creating a, 348-352
parameterless, creating a, 344-347
standard, list of, 370
and string streams, 347, 412
vs. stream member functions, 393
map container, 94, 97
advantages of using a, 179
basic techniques for using a, 145-156
constructors, 147, 157-158
iterators, 149-150, 154, 158, 159
performance characteristics, 159
recipe using a, 156-162
template specification, 147, 157
<map> header, 97, 147, 148, 158, 164
max_size(), 14, 16, 52, 53, 98, 110
mem_fun() pointer-to-member function
adaptor, 265
mem_fun_ref() pointer-to-member function
adaptor, 265
memchr(), 11
mememp(), 11
memcpy(), 11
memmove(), 11, 32
Memory leaks, 488
memset(), 11

merge() algorithm, 182, 186, 187, 231-232
comparison function version of, 234
merge() function, 125, 126
comparison function version of, 130
minus function object, 95, 184, 246
mismatch() algorithm, 184, 187, 199, 203
modulus function object, 184, 246
Monetary values
using money_put to format, 398-401
using moneypunct with, 402-407
money_base class, 403, 406
money_get facet, 402
money_put facet, 371, 372, 373, 397, 408
template declaration, 399
using the, 398-401
moneypunct facet, 355, 373
template declaration, 403
using the, 402-407
multimap container, 97, 146, 156, 162
advantages of using a, 179
constructors, 164
iterators, 164
performance characteristics, 165
recipe for using a, 163-169
template specification, 163-164
multiplies function object, 95, 184, 246
multiset container, 97, 156
constructors, 171
iterators, 99
recipe using a, 169-172, 174-179
template specification, 171

N
name(), 353

defined by type_info, 479
neg_format(), 406-407
negate function object, 188, 246
negative_sign(), 406
Negators, 96, 188

how to use, 259-261

how to use functions with, 262
<new> header, 456
new operator, 488

overloading the, 451-456
next_permutation() algorithm, 186, 187, 207,

222-224

Index

303

noboolalpha manipulator, 370, 392
noshowbase manipulator, 370, 392
noshowpoint manipulator, 370, 392, 393
noshowpos manipulator, 370, 392
notl() negator, 188, 259, 260
not2() negator, 188, 259, 260
not_equal_to function object, 184, 246
nothrow, 456
nothrow_t, 456
nounitbuf manipulator, 370, 392
nouppercase manipulator, 370, 392
npos variable, 12, 14-15, 61
NULL macro, 357, 358
num_get facet, 355, 398
num_put facet, 355, 372, 373, 395, 397-398
<numeric> header, 487
Numeric values
format flags to format, using, 379-383
for a locale, formatting, 395-398
and numpunct, 402-406
setting the precision of floating-point.
See Floating-point values
numpunct facet, 355, 373
template declaration, 403
using the, 402—406

0
Object's type at runtime, determining an,
478-484
oct
format flag, 368, 369, 379, 380, 393
manipulator, 370, 392
off_type, 283, 327
ofstream class, 286, 290, 291, 293, 314,
315, 327
constructors, 294, 301
Open operation, 280
open(), 285, 290-291, 292, 293, 294, 297, 301,
302, 304, 305, 315
openmode enumeration, 283, 290
operator function(s)
general form of an, 427
and inheritance, 436
member, 426427, 428-430
non-member, 427-428, 431-432
operator delete[](), 452, 453

304

Herb Schildt's C++ Programming Cookbook

operator delete(), 451, 452
operator keyword, 427, 463
operator new|](), 451, 453
nothrow version of, 456
operator new(), 451, 452
nothrow version of, 456
Operator overloading
basic techniques for, 426436
and the class member access operator
—>, 445-451
and the function call operator (),
437-440
and the increment and decrement
operators, 457462
and new and delete, 451-456
and passing operands by value vs.
passing by reference, 435436
restrictions, 436
and the subscripting operator [],
441-445
Operators
insertion and extraction, 341
and null-terminated strings, 11
and string objects, 15, 52, 53-54,
58-59
supported by containers, 98
operator—>(), 445-451
operator[](), 99, 112, 120
map version of, 158-159
using, 441-445
operator=(), 468, 478
operator==(), 141, 172
type_info version of, 479
operator!=(), type_info version of, 479
operator<(), 141, 172,175, 179
operator——()
member form of, 458
non-member form of, 462
operator — —(int)
member form of, 458
non-member form of, 462
operator(), 95, 184, 188, 245, 248, 249, 250,
263, 265
operator()(), 437
operator++()
member form of, 458
non-member form of, 462

operator++(int)
member form of, 458
non-member form of, 462
ostream class, 286, 287, 294, 315, 316, 327,
341, 342,345, 348
<ostream> header, 284, 294, 370, 393
ostream_iterator class, 266268
ostream_type, 268, 269
ostreambuf_iterator class, 266267, 269, 398,
399, 400, 408, 409
ostringstream class, 286, 337, 338, 412
constructor, 337, 340
out, 290
out_of_range exception, 16, 113
Outlter, 72, 73, 95, 183

P
pair class, 101, 147-148, 158, 159, 164, 199
pair<const Key, T>, 148, 158, 164
pair<Key, T>, 148
partial_sort() algorithm, 186, 187, 191-192
partial_sort_copy() algorithm, 186, 187, 192
partial_sum() algorithm, 487
pattern structure, 406
peek(), 284, 333, 334-336
plus function object, 95, 184, 246
Pointer(s)
array-indexing syntax with, using, 24
auto_ptr. See auto_ptr
base class, 478, 480
function. See Function pointer
get, 327
overloaded —> to create a safe, using
an, 446, 447-450
put, 327
similarity to iterators, 109, 154
pointer_to_binary_function class, 263
pointer_to_unary_function class, 263
Polymorphism, 478
pop(), 124,133, 134, 135
pop_back(), 99, 111, 113, 119, 120, 125, 126,
133,135
pop_front(), 99, 112, 119, 120, 124, 125,
126, 134
pop_heap() algorithm, 186, 187, 235,
236, 237
comparison function version, 238

pos_format(), 406
pos_type, 283, 332
positive_sign(), 406
precision(), 283, 370, 382, 383-385,
393, 412
Predicate
binary, 77-78, 96, 188
unary, 96, 188
prev_permutation() algorithm, 186, 187,
207,222-224
printf(), 355, 362, 368, 371
format specifiers, table of, 420
using, 418-424
priority_queue container adaptor, 97-98,
110, 119
constructors, 135
recipe for using, 132-137
template specification, 134
ptr_fun() pointer-to-function adaptor,
262-263, 265
push(), 124, 133, 134, 135
push_back(), 13, 52, 54-55, 99, 111, 113, 114,
117,119, 120, 125, 126, 133, 134, 135, 275
push_front(), 99, 112, 119, 120, 124,
125,126, 275
push_heap() algorithm, 186, 187,
235-236
comparison function version, 238
Put pointer, 327
put(), 284, 304, 314, 315
defined by money_put, 400, 402
defined by num_put, 397-398
defined by time_put, 408, 409,
410, 411
used with facets, 373
putback(), 284, 336
pute(), 361

Q

queue container adaptor, 96, 97-98, 110,
119, 124
constructor, 134
and list, 140
recipe for using, 132-137
template specification, 133-134
<queue> header, 97

Index 505

R
Randlter, 95, 183
random_shuffle() algorithm, 185, 187,
203-204, 224-225
rbegin(), 14, 71, 72, 98, 103, 105, 113, 120,
126, 146, 149-150, 159
rdstate(), 283, 288-289, 296, 300, 304, 322, 326
to detect end-of-file, using, 322
read(), 284, 306, 307, 309, 310, 315
readsome(), 336
real(), 485, 486
Recursion to reverse a string, using, 26
reference
class defined by vector<bool>, 118
type, 97, 112
release(), 488, 489
remove()
algorithm, 185, 187, 228
C function, 362, 363-365
list container function, 125, 126,
127,130
remove_copy() algorithm, 185, 187, 230
and insert iterator adaptors, 277
remove_copy_if() algorithm, 185, 187, 230
remove_if()
algorithm, 185, 187, 230, 248, 257, 258
function, 126, 130-131
rename(), 362, 363-365
rend(), 14,71, 72,98, 103, 105, 113, 120, 126,
146, 149-150, 159
replace() algorithm, 185, 187, 188
replace() function, 13, 66, 67, 68, 69
iterator version, 71,73, 77,78
replace_copy() algorithm, 185, 187, 230
and insert iterator adaptors, 277
with stream iterators, 272-273
replace_copy_if() algorithm, 185, 187, 230
replace_if() algorithm, 185, 187, 230
reserve(), 14, 52, 54, 58, 112, 114
reset(), 488, 489
resetiosflags() manipulator, 370, 393
resize(), 13, 112, 114, 119
Result generic type, 263
result_type, 250
reverse()
algorithm, 185, 187, 203204
function, 125, 126, 127

506

Herb Schildt's C++ Programming Cookbook

reverse_copy() algorithm, 185, 187, 207
and insert iterator adaptors, 277
reverse_iterator, 14,71, 72,97, 113
rewind(), 362
rfind(), 13, 60
right
format flag, 368, 369, 388, 389
manipulator, 370, 392
rotate() algorithm, 185, 187, 203204
use reverse iterators to perform a
right-rotate with the, 206207
rotate_copy() algorithm, 185, 187, 207
Runtime type information (RTTI), 478
runtime_error exception, 353, 372, 396

S
scanf(), 355, 362
scientific
format flag, 368, 369, 379, 380, 383
manipulator, 370, 392
search() algorithm, 66, 69, 77, 78, 81, 82, 184,
187,197
to find a matching sequence, using,
199-203
search_n() algorithm, 184, 187, 203
second_argument_type, 250
SEEK_CUR macro, 362
SEEK_END macro, 362
SEEK_SET macro, 362
seekdir enumeration, 283, 327
seekg(), 284, 315, 327, 332
to access fixed-size records, using,
329-332
seekp(), 284, 315, 327, 332
to access fixed-size records, using,
331-332
Sequence. See Container sequence(s)
Sequence containers, 94, 97
requirements for, 99-100
reversible, 105
techniques, basic, 102-110
set container, 97, 146, 147, 156
constructors, 170
iterators, 171
recipe using a, 169-174, 178-179
template specification, 170
<set> header, 97, 170, 171

Set operations, performing, 217-222
set_difference() algorithm, 186, 187, 217,
218, 221-222
set_intersection() algorithm, 186, 187, 217,
218-219, 221-222
set_symmetric_difference() algorithm, 186,
187,217, 218,221-222
set_union() algorithm, 186, 187, 217, 218,
221-222
setbase() manipulator, 370, 393
setf(), 283, 370, 374, 375, 380, 393
and string streams, 412
two-argument form of, 378, 380,
389, 393
setfill() manipulator, 370, 393
setiosflags() manipulator, 370, 393
setlocale(), 373, 417
setprecision() manipulator, 370, 393
setstate(), 283
setw() manipulator, 370, 393
showbase
format flag, 368, 369, 379, 380, 400
manipulator, 370, 392
showpoint
format flag, 368, 369, 379, 380, 393
manipulator, 370, 392, 393
showpos
format flag, 368, 369, 379, 380, 386, 389
manipulator, 370, 392
Size generic type name, 183
size(), 14, 52, 54, 58,98, 103, 104, 114, 134,
135, 146, 149
size_t type, 11,17, 357, 452
size_type, 14, 54, 97
sizeof, 17,19
skipws
format flag, 368, 369
manipulator, 370
slice class, 487
sort() algorithm, 118, 124, 141, 183, 186, 187,
189-190
performance guarantee, 101
sort() function, 125, 126
comparison function version, 130
sort_heap() algorithm, 186, 187, 235,
236, 237
comparison function version, 238

splice(), 125, 126-127
sprintf(), 362, 371, 414, 419, 424
problems with, 424
sscanf(), 362
stable_sort() alogrithm, 186, 187, 192
stack container adaptor, 97-98, 110, 119, 124
constructor, 133
to create a post-fix calculator, using,
137-140
recipe for using a, 132-137
template specification, 133
Stack
using deque as a first-in, first-out, 124
using deque as a first-in, last-out, 124
<stack> header, 97, 133
Standard Template Library (STL), 93
overview, 94-96
and the string class, 15, 58
std namespace, using the, 4-5
<stdexcept> header, 16
STL. See Standard Template Library (STL)
str(), 337, 338, 341
strcat(), 9,12,17-18
strchr(), 9, 21
stremp(), 9, 17, 18, 263
case-sensitive nature of, 27
strepy (), 9, 10, 11, 12, 17
strepy_s(), 11
strespn(), 10, 22
Stream iterators. See Iterators, stream
Stream(s), C++, 280-281
class specializations, 285-287
classes, 281-285
field width attribute, 369, 385-388
file, 290-291
fill character attribute, 369, 370, 385,
386-388
locale, obtaining and setting a,
352-355, 371
precision attribute, 369, 370, 383-385
predefined, 287
Stream(s), C++ string
formatting data into a, 412414
using, 282, 337-341
streambuf class, 286
<streambuf> header, 282
streambuf_type, 268, 269

Index 507

streamsize, 302, 307, 333, 383, 385
strftime(), 367, 368, 371, 408, 410, 411, 424
format specifiers, table of, 416
using, 414-416
string class, 7
constructors, 12-13, 52-53, 72-73
as a container for characters, 70
exceptions, 16
functions, list of some, 13-14
and I/0, 282
overview of, 11-16
STL-compatible aspect of, 15, 58, 66, 76
<string> header, 12, 52
string object(s)
basic operations on, performing, 51-59
case-insensitive search and search-
and-replace functions for, creating,
76-82
for I/0, using, 282, 337-341
into a null-terminated string,
converting a, 83-85
iterators with, using, 70-76
mixing null-terminated strings with,
15,58
operators with, using, 15
and the printf() precision specifier, 422
search-and-replace function for,
creating a, 66—69
searching, 59-66
subtraction for, implementing, 85-91
tokenizing, 63-65
String(s)
as arrays, 7, 8,9
Cvs.C++,7,8
literals, 8, 16
streams. See Stream(s), C++ string
wide character, 7, 12
String(s), null-terminated, 7
advantages of, 16
basic operations on, performing, 16-20
characters within a, categorize, 39-43
comparing, ignore case differences
when, 27-31
converting a string object into a, 83-85
functions, table of commonly
used, 9-10
limitations of, 11-12

508

Herb Schildt's C++ Programming Cookbook

String(s), null-terminated (Continued)
operators and, 11
overview of, 8-11
reversing a, 23-27
search-and-replace function for,

creating a, 31-38

searching, 20-23
string objects with, mixing, 15, 58
tokenize a, 44-50
word-count program, 4143

string_type, 404

stringbulf class, 286

stringstream class, 286, 337, 338
constructor, 337, 340

strlen(), 10, 17, 23, 24

strncat(), 10, 20

strnemp(), 10, 20

strnepy(), 10, 20, 32, 33

strpbrk(), 10, 21

strrchr(), 10, 22-23

strspn(), 10, 22

strstr(), 10, 21, 32

strtok(), 10, 23, 44-45, 50, 63
limitations of, 47

struct, 246
vs. class, using, 43

Subscripting operator, how to overload the,

441-445

substr(), 14, 52, 55

swap(), 13,98, 103, 105, 147
map version of, 150
vector<bool> version of, 118

swap_ranges() algorithm, 185, 187, 227

T
T generic type name, 183
tellg(), 284, 332
tellp(), 284, 332
this pointer, 426, 428, 429, 430, 431
thousands_sep(), 402, 403, 404
Time and date

format specifiers, 410

using strftime() to format,

414-418, 424

using time_put to format, 407-411, 424
time(), 409410, 415
time_get facet, 355, 372

time_put facet, 355, 371, 373, 414, 418, 424
advantages of using the, 408
template declaration, 408
using the, 407411

time_t value, 409-410

tm structure, 409, 414, 415

Token, definition of, 44

Tokenizing
a null-terminated string, 44-50
a string object, 6365

tolower(), 28, 78, 355
<locale> version of, 31, 82

top(), 133, 135

toupper(), 31, 82

traits_type, 283, 322

traits_type::eof(), 333

transform(), algorithm, 71, 73, 185, 187, 210,

211-215, 244

truename(), 405406

trunc, 290, 291

try block, 323-324

Type extensibility, 426

type_info class, 479

typeid operator, 478, 479484

<typeinfo> header, 479

U

unary_function structure, 249-250
unary_negate class, 260
unget(), 284, 333, 334-336
unique() algorithm, 185, 187, 230
unique() function, 125, 126, 127
binary predicate form of the, 131
unique_copy() algorithm, 185, 187, 230
unitbuf
format flag, 368, 369
manipulator, 370, 392
UnPred generic type name, 96, 183
unsetf(), 283, 370, 374, 375, 380, 393
upper_bound()
algorithm, 186, 187, 198
function, 101, 141, 155, 163, 165, 170,
171,172
uppercase
format flag, 368, 369, 380
manipulator, 370, 392
<utility> header, 148

use_facet(), 372, 373, 397, 399, 402, 403,
408-409
using std namespace, 4-5

V

valarray class, 487
<valarray> header, 487
value_comp(), 101
value_type, 14, 97, 101, 148, 158, 164
vector container, 15, 94, 119, 124, 133
of characters, recipe for extracting
sentences from a, 194-197
constructors, 104, 112
deletions from a, effects of, 114
example to illustrate basic sequence
container operations, 105-109
insertions into a, effects of, 114
iterators, 113

Index 509

performance guarantee and
characteristics, 101, 110, 114

recipe for using a, 111-118

storing user-defined objects in a,
recipe for, 141-144

template specification, 103-104, 112

vector<bool> specialization of the, 118

<vector> header, 97, 104, 112

W
wchar_t, 7,12, 368
streams based on, 285-286
strings, array overrun and, 20
width(), 283, 370, 382, 385-386, 388, 393, 412
Word-count program, 41-43
write(), 284, 301, 302, 304-305, 315
ws manipulator, 370
wstring class, 7, 12, 52

	Copyright © 2008 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Preface:
	1 Overview:
	What's Inside:
	How the Recipes Are Organized:
	A Few Words of Caution:
	C++ Experience Required:
	What Version of C++?:
	Two Coding Conventions:
	Returning a Value from main():
	Using Namespace std?:
	2 String Handling:
	Overview of Null-Terminated Strings:
	Overview of the string Class:
	String Exceptions:
	Perform Basic Operations on Null-Terminated Strings:
	Search a Null-Terminated String:
	Step-by-Step:
	Discussion:
	Example:
	Options and Alternatives:
	Reverse a Null-Terminated String:
	Ignore Case Differences When Comparing Null-Terminated Strings:
	Create a Search-and-Replace Function for Null-Terminated Strings:
	Categorize Characters Within a Null-Terminated String:
	Bonus Example: Word Count:
	Tokenize a Null-Terminated String:
	Perform Basic Operations on string Objects:
	Search a string Object:
	Bonus Example: A Tokenizer Class for string Objects:
	Create a Search-and-Replace Function for string Objects:
	Operate on string Objects Through Iterators:
	Create Case-Insensitive Search and Search-and-Replace Functions for string Objects:
	Convert a string Object into a Null-Terminated String:
	Implement Subtraction for string Objects:
	3 Working with STL Containers:
	STL Overview:
	Containers:
	Algorithms:
	Iterators:
	Allocators:
	Function Objects:
	Adaptors:
	Predicates:
	Binders and Negators:
	The Container Classes:
	Common Functionality:
	Performance Issues:
	Basic Sequence Container Techniques:
	Use vector:
	Use deque:
	Use list:
	Use the Sequence Container Adaptors: stack, queue, and priority_queue:
	Bonus Example: Use stack to Create a Four-Function Calculator:
	Store User-Defined Objects in a Container:
	Basic Associative Container Techniques:
	Use map:
	Use multimap:
	Use set and multiset:
	Bonus Example: Use multiset to Store Objects with Duplicate Keys:
	4 Algorithms, Function Objects, and Other STL Components:
	Algorithm Overview:
	Why Algorithms?:
	Algorithms Are Template Functions:
	The Algorithm Categories:
	Function Object Overview:
	Binders and Negators Overview:
	Sort a Container:
	Find an Element in a Container:
	Bonus Example: Extract Sentences from a Vector of Characters:
	Use search() to Find a Matching Sequence:
	Reverse, Rotate, and Shuffle a Sequence:
	Bonus Example: Use Reverse Iterators to Perform a Right-Rotate:
	Cycle Through a Container with for_each():
	Use transform() to Change a Sequence:
	Perform Set Operations:
	Permute a Sequence:
	Copy a Sequence from One Container to Another:
	Replace and Remove Elements in a Container:
	Merge Two Sorted Sequences:
	Create and Manage a Heap:
	Create an Algorithm:
	Bonus Example: Use a Predicate with a Custom Algorithm:
	Use a Built-In Function Object:
	Create a Custom Function Object:
	Bonus Example: Use a Function Object to Maintain State Information:
	Use a Binder:
	Use a Negator:
	Use the Pointer-to-Function Adaptor:
	Use the Stream Iterators:
	Bonus Example: Create an STL-Based File Filter:
	Use the Insert Iterator Adaptors:
	5 Working with I/O:
	I/O Overview:
	C++ Streams:
	The C++ Stream Classes:
	The Stream Class Specializations:
	C++'s Predefined Streams:
	Checking for Errors:
	Opening and Closing a File:
	Write Formatted Data to a Text File:
	Read Formatted Data from a Text File:
	Write Unformatted Binary Data to a File:
	Read Unformatted Binary Data from a File:
	Use get() and getline() to Read from a File:
	Read from and Write to a File:
	Detecting EOF:
	Bonus Example: A Simple File-Comparison Utility:
	Use Exceptions to Detect and Handle I/O Errors:
	Use Random-Access File I/O:
	Bonus Example: Use Random-Access I/O to Access Fixed-Size Records:
	Look Ahead in a File:
	Use the String Streams:
	Create Custom Inserters and Extractors:
	Create a Parameterless Manipulator:
	Create a Parameterized Manipulator:
	Obtain or Set a Stream's Locale:
	Use the C-Based File System:
	Rename and Remove a File:
	6 Formatting Data:
	Formatting Overview:
	The Format Flags:
	The Field Width, Precision, and Fill Character:
	Format-Related Stream Member Functions:
	The I/O Manipulators:
	Format Data Using the Localization Library:
	The printf() Family of Functions:
	The strftime() Function:
	Facet Overview:
	Access the Format Flags via Stream Member Functions:
	Bonus Example: Display the Format Flag Settings:
	Display Numeric Values in Various Formats:
	Set the Precision:
	Set the Field Width and Fill Character:
	Bonus Example: Line Up Columns of Numbers:
	Justify Output:
	Use I/O Manipulators to Format Data:
	Format Numeric Values for a Locale:
	Format Monetary Values Using the money_put Facet:
	Use the moneypunct and numpunct Facets:
	Format Time and Date Using the time_put Facet:
	Format Data into a String:
	Format Time and Date Using strftime():
	Use printf() to Format Data:
	7 Potpourri:
	Operator Overloading Basic Techniques:
	Overload the Function Call Operator ():
	Overload the Subscripting Operator []:
	Overload the → Operator:
	Bonus Example: A Simple Safe Pointer Class:
	Overload new and delete:
	Overload the Increment and Decrement Operators:
	Create a Conversion Function:
	Create a Copy Constructor:
	Bonus Example: A Safe Array that Uses Dynamic Allocation:
	Determine an Object's Type at Runtime:
	Use Complex Numbers:
	Use auto_ptr:
	Create an Explicit Constructor:
	Index:

